可变形物体实时交互切削仿真中的加速切削任务。

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shiyu Jia, Qian Dong, Zhenkuan Pan, Xiaokang Yu, Wenli Xiu, Jingli Zhang
{"title":"可变形物体实时交互切削仿真中的加速切削任务。","authors":"Shiyu Jia, Qian Dong, Zhenkuan Pan, Xiaokang Yu, Wenli Xiu, Jingli Zhang","doi":"10.1109/MCG.2025.3538985","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation speed is crucial for virtual reality simulators involving real-time interactive cutting of deformable objects, such as surgical simulators. Previous efforts to accelerate these simulations resulted in significant speed increases during non-cutting periods, but only moderate ones during cutting periods. This paper aims to further increase the latter. Three novel methods are proposed: (1) GPU-based update of mass and stiffness matrices of composite finite elements. (2) GPU-based collision processing between cutting tools and deformable objects. (3) Redesigned CPU-GPU synchronization mechanisms combined with GPU acceleration for the update of the surface mesh. Simulation tests, including a complex hepatectomy simulation, are performed. Results show that our methods increase the simulation speed during cutting periods by 40.4% to 56.5.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerate Cutting Tasks in Real-Time Interactive Cutting Simulation of Deformable Objects.\",\"authors\":\"Shiyu Jia, Qian Dong, Zhenkuan Pan, Xiaokang Yu, Wenli Xiu, Jingli Zhang\",\"doi\":\"10.1109/MCG.2025.3538985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulation speed is crucial for virtual reality simulators involving real-time interactive cutting of deformable objects, such as surgical simulators. Previous efforts to accelerate these simulations resulted in significant speed increases during non-cutting periods, but only moderate ones during cutting periods. This paper aims to further increase the latter. Three novel methods are proposed: (1) GPU-based update of mass and stiffness matrices of composite finite elements. (2) GPU-based collision processing between cutting tools and deformable objects. (3) Redesigned CPU-GPU synchronization mechanisms combined with GPU acceleration for the update of the surface mesh. Simulation tests, including a complex hepatectomy simulation, are performed. Results show that our methods increase the simulation speed during cutting periods by 40.4% to 56.5.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2025.3538985\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2025.3538985","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

仿真速度对于包括可变形物体的实时交互切割的虚拟现实模拟器(如外科模拟器)至关重要。之前加速模拟的努力导致了非切削期间速度的显著提高,但在切削期间只有适度的提高。本文旨在进一步完善后者。提出了三种新方法:(1)基于gpu的复合材料有限元质量和刚度矩阵更新。(2)基于gpu的刀具与可变形物体碰撞处理。(3)重新设计CPU-GPU同步机制,结合GPU加速更新曲面网格。进行模拟试验,包括复杂的肝切除术模拟。结果表明,我们的方法使切削过程的模拟速度提高了40.4%,达到56.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerate Cutting Tasks in Real-Time Interactive Cutting Simulation of Deformable Objects.

Simulation speed is crucial for virtual reality simulators involving real-time interactive cutting of deformable objects, such as surgical simulators. Previous efforts to accelerate these simulations resulted in significant speed increases during non-cutting periods, but only moderate ones during cutting periods. This paper aims to further increase the latter. Three novel methods are proposed: (1) GPU-based update of mass and stiffness matrices of composite finite elements. (2) GPU-based collision processing between cutting tools and deformable objects. (3) Redesigned CPU-GPU synchronization mechanisms combined with GPU acceleration for the update of the surface mesh. Simulation tests, including a complex hepatectomy simulation, are performed. Results show that our methods increase the simulation speed during cutting periods by 40.4% to 56.5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Graphics and Applications
IEEE Computer Graphics and Applications 工程技术-计算机:软件工程
CiteScore
3.20
自引率
5.60%
发文量
160
审稿时长
>12 weeks
期刊介绍: IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信