阿尔茨海默病的监督和智能分类技术。

IF 2.8 Q2 NEUROSCIENCES
Journal of Alzheimer's disease reports Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1177/25424823241311838
Jabli Mohamed Amine, Moussa Mourad
{"title":"阿尔茨海默病的监督和智能分类技术。","authors":"Jabli Mohamed Amine, Moussa Mourad","doi":"10.1177/25424823241311838","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Significant advancements in neuroimaging have emerged over the past decade, notably through positron emission tomography (PET) and magnetic resonance imaging (MRI) for diagnosing Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Combining imaging modalities with machine learning (ML) techniques enhances diagnostic accuracy.</p><p><strong>Objective: </strong>To develop predictive models using pre-treatment brain imaging data to distinguish between normal controls (NC), MCI, and AD stages, improving diagnostic precision.</p><p><strong>Methods: </strong>We utilized the Alzheimer's Disease Neuroimaging Initiative database, processing 3D MRI, PET Florbetaben, and PET Flortaucipir images. Techniques included convolutional neural networks (CNN), fuzzy logic, and multi-layer perceptron (MLP). Feature extraction involved amyloid-β volume, tau protein levels, and empty space volumes.</p><p><strong>Results: </strong>The fuzzy logic approach achieved a classification accuracy of 99.1%, outperforming CNN (90.67%) and MLP (94%). Integration of multimodal data significantly enhanced performance compared to single-modality approaches.</p><p><strong>Conclusions: </strong>Our study demonstrates that integrating advanced ML techniques with multimodal neuroimaging can effectively classify AD stages. These findings address critical gaps in early detection and provide a foundation for future clinical applications.</p>","PeriodicalId":73594,"journal":{"name":"Journal of Alzheimer's disease reports","volume":"9 ","pages":"25424823241311838"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864258/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alzheimer's disease classification by supervised and intelligent techniques.\",\"authors\":\"Jabli Mohamed Amine, Moussa Mourad\",\"doi\":\"10.1177/25424823241311838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Significant advancements in neuroimaging have emerged over the past decade, notably through positron emission tomography (PET) and magnetic resonance imaging (MRI) for diagnosing Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Combining imaging modalities with machine learning (ML) techniques enhances diagnostic accuracy.</p><p><strong>Objective: </strong>To develop predictive models using pre-treatment brain imaging data to distinguish between normal controls (NC), MCI, and AD stages, improving diagnostic precision.</p><p><strong>Methods: </strong>We utilized the Alzheimer's Disease Neuroimaging Initiative database, processing 3D MRI, PET Florbetaben, and PET Flortaucipir images. Techniques included convolutional neural networks (CNN), fuzzy logic, and multi-layer perceptron (MLP). Feature extraction involved amyloid-β volume, tau protein levels, and empty space volumes.</p><p><strong>Results: </strong>The fuzzy logic approach achieved a classification accuracy of 99.1%, outperforming CNN (90.67%) and MLP (94%). Integration of multimodal data significantly enhanced performance compared to single-modality approaches.</p><p><strong>Conclusions: </strong>Our study demonstrates that integrating advanced ML techniques with multimodal neuroimaging can effectively classify AD stages. These findings address critical gaps in early detection and provide a foundation for future clinical applications.</p>\",\"PeriodicalId\":73594,\"journal\":{\"name\":\"Journal of Alzheimer's disease reports\",\"volume\":\"9 \",\"pages\":\"25424823241311838\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864258/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's disease reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25424823241311838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's disease reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25424823241311838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在过去的十年中,神经影像学取得了重大进展,特别是通过正电子发射断层扫描(PET)和磁共振成像(MRI)诊断阿尔茨海默病(AD)及其前驱轻度认知障碍(MCI)。将成像模式与机器学习(ML)技术相结合可以提高诊断的准确性。目的:利用治疗前脑成像数据建立预测模型,以区分正常对照(NC)、MCI和AD分期,提高诊断精度。方法:我们利用阿尔茨海默病神经影像学倡议数据库,处理3D MRI, PET Florbetaben和PET Flortaucipir图像。技术包括卷积神经网络(CNN)、模糊逻辑和多层感知器(MLP)。特征提取涉及淀粉样蛋白-β体积、tau蛋白水平和空腔体积。结果:模糊逻辑方法的分类准确率达到99.1%,优于CNN(90.67%)和MLP(94%)。与单模态方法相比,多模态数据的集成显著提高了性能。结论:我们的研究表明,将先进的ML技术与多模态神经影像学相结合可以有效地分类AD的分期。这些发现解决了早期发现的关键空白,并为未来的临床应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alzheimer's disease classification by supervised and intelligent techniques.

Background: Significant advancements in neuroimaging have emerged over the past decade, notably through positron emission tomography (PET) and magnetic resonance imaging (MRI) for diagnosing Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Combining imaging modalities with machine learning (ML) techniques enhances diagnostic accuracy.

Objective: To develop predictive models using pre-treatment brain imaging data to distinguish between normal controls (NC), MCI, and AD stages, improving diagnostic precision.

Methods: We utilized the Alzheimer's Disease Neuroimaging Initiative database, processing 3D MRI, PET Florbetaben, and PET Flortaucipir images. Techniques included convolutional neural networks (CNN), fuzzy logic, and multi-layer perceptron (MLP). Feature extraction involved amyloid-β volume, tau protein levels, and empty space volumes.

Results: The fuzzy logic approach achieved a classification accuracy of 99.1%, outperforming CNN (90.67%) and MLP (94%). Integration of multimodal data significantly enhanced performance compared to single-modality approaches.

Conclusions: Our study demonstrates that integrating advanced ML techniques with multimodal neuroimaging can effectively classify AD stages. These findings address critical gaps in early detection and provide a foundation for future clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信