{"title":"单核RNA测序揭示了重度抑郁症患者前额皮质代谢失调。","authors":"Xiang-Yao Li, Yingbo Rao, Guo-Hao Li, Luxi He, Yaohan Wang, Wenli He, Ping Fang, Chenyu Pei, Lun Xi, Haiyan Xie, Yun-Rong Lu","doi":"10.1038/s41598-025-92030-8","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a widespread psychiatric condition, recognized as the third leading cause of global disease burden in 2008. In the context of MDD, alterations in synaptic transmission within the prefrontal cortex (PFC) are associated with PFC hypoactivation, a key factor in cognitive function and mood regulation. Given the high energy demands of the central nervous system, these synaptic changes suggest a metabolic imbalance within the PFC of MDD patients. However, the cellular mechanisms underlying this metabolic dysregulation remain not fully elucidated. This study employs single-nucleus RNA sequencing (snRNA-seq) data to predict metabolic alterations in the dorsolateral PFC (DLPFC) of MDD patients. Our analysis revealed cell type-specific metabolic patterns, notably the disruption of oxidative phosphorylation and carbohydrate metabolism in the DLPFC of MDD patients. Gene set enrichment analysis based on human phenotype ontology predicted alterations in serum lactate levels in MDD patients, corroborated by the observed decrease in lactate levels in MDD patients compared to 47 age-matched healthy controls (HCs). This transcriptional analysis offers novel insights into the metabolic disturbances associated with MDD and the energy dynamics underlying DLPFC hypoactivation. These findings are instrumental for comprehending the pathophysiology of MDD and may guide the development of innovative therapeutic strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7418"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-nucleus RNA sequencing uncovers metabolic dysregulation in the prefrontal cortex of major depressive disorder patients.\",\"authors\":\"Xiang-Yao Li, Yingbo Rao, Guo-Hao Li, Luxi He, Yaohan Wang, Wenli He, Ping Fang, Chenyu Pei, Lun Xi, Haiyan Xie, Yun-Rong Lu\",\"doi\":\"10.1038/s41598-025-92030-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major depressive disorder (MDD) is a widespread psychiatric condition, recognized as the third leading cause of global disease burden in 2008. In the context of MDD, alterations in synaptic transmission within the prefrontal cortex (PFC) are associated with PFC hypoactivation, a key factor in cognitive function and mood regulation. Given the high energy demands of the central nervous system, these synaptic changes suggest a metabolic imbalance within the PFC of MDD patients. However, the cellular mechanisms underlying this metabolic dysregulation remain not fully elucidated. This study employs single-nucleus RNA sequencing (snRNA-seq) data to predict metabolic alterations in the dorsolateral PFC (DLPFC) of MDD patients. Our analysis revealed cell type-specific metabolic patterns, notably the disruption of oxidative phosphorylation and carbohydrate metabolism in the DLPFC of MDD patients. Gene set enrichment analysis based on human phenotype ontology predicted alterations in serum lactate levels in MDD patients, corroborated by the observed decrease in lactate levels in MDD patients compared to 47 age-matched healthy controls (HCs). This transcriptional analysis offers novel insights into the metabolic disturbances associated with MDD and the energy dynamics underlying DLPFC hypoactivation. These findings are instrumental for comprehending the pathophysiology of MDD and may guide the development of innovative therapeutic strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"7418\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92030-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92030-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Single-nucleus RNA sequencing uncovers metabolic dysregulation in the prefrontal cortex of major depressive disorder patients.
Major depressive disorder (MDD) is a widespread psychiatric condition, recognized as the third leading cause of global disease burden in 2008. In the context of MDD, alterations in synaptic transmission within the prefrontal cortex (PFC) are associated with PFC hypoactivation, a key factor in cognitive function and mood regulation. Given the high energy demands of the central nervous system, these synaptic changes suggest a metabolic imbalance within the PFC of MDD patients. However, the cellular mechanisms underlying this metabolic dysregulation remain not fully elucidated. This study employs single-nucleus RNA sequencing (snRNA-seq) data to predict metabolic alterations in the dorsolateral PFC (DLPFC) of MDD patients. Our analysis revealed cell type-specific metabolic patterns, notably the disruption of oxidative phosphorylation and carbohydrate metabolism in the DLPFC of MDD patients. Gene set enrichment analysis based on human phenotype ontology predicted alterations in serum lactate levels in MDD patients, corroborated by the observed decrease in lactate levels in MDD patients compared to 47 age-matched healthy controls (HCs). This transcriptional analysis offers novel insights into the metabolic disturbances associated with MDD and the energy dynamics underlying DLPFC hypoactivation. These findings are instrumental for comprehending the pathophysiology of MDD and may guide the development of innovative therapeutic strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.