利用深度学习对扬州古运河冬夏景观色彩的定量分析与评价。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yanyan Wang, Jiangling Qian, Jiajie Cao, Rong Fan, Xunyu Han
{"title":"利用深度学习对扬州古运河冬夏景观色彩的定量分析与评价。","authors":"Yanyan Wang, Jiangling Qian, Jiajie Cao, Rong Fan, Xunyu Han","doi":"10.1038/s41598-025-91483-1","DOIUrl":null,"url":null,"abstract":"<p><p>Color is an important index for human visual evaluation of landscape, and it is also a key factor affecting people's recognition and experience of heritage landscape. In this study, five important sites of the Yangzhou Grand Canal were selected for the color quantification analysis by using the Deep Learning(DL) scene parsing algorithm. The color characteristics of the winter and summer landscape of the five sites were evaluated as well as the Scenic Beauty Estimation (SBE) value. Furthermore, the correlation analysis between the color characteristics and the SBE value was established in order to study the relationship between color characteristics and the landscape beauty. The main results are as follows: ①.The dominant color of the five sites is blue and green, the building color is mainly orange and yellow in both winter and summer. The dominant plant color in five sites is green in summer, whereas in winter, changes to yellow(Site5:YZJGD) or cyan(Site1:DGGD, Site3:GZGD); ②.The overall color saturation is low in winter with the percentages of Very Low Saturation in almost each site(except site5:YZJGD)reach 80-98%. Summer has Medium Saturation colors, the percentage of Mid Saturation of sky in Site 2(GMS) in summer is 44.87%. ③. The landscapes have low brightness in winter and higher brightness in summer in all sites, sky is the only category whose High Brightness value exceeds 50% in both seasons.And in winter, landscapes are most prevalent in Low Brightness and Medium Brightness. In summer, the percentages of Medium Brightness and High Brightness increase.④.The color diversity of the sites in winter varies significantly, whereas the color diversity of the sites in summer varies slightly.The highest color diversity of plants is found in DGGD(Diversity > 1.5). ⑤.In winter, the highest SBE value is found in Site2:GMS(0.5956), and the lowest SBE value is found in Site5:YZJGD(- 0.8216),which is a large gap(1.4172).The highest average SBE value is in Site2:GMS(0.5062), followed by Site3:GZGD (0.2091), which both have average values greater than zero. ⑥.Correlation analysis revealed that there is no significant correlation between the saturation and SBE values(p > 0.05).However, the Pearson correlation coefficients which are - 0.625(winter) and 0.689(summer) indicate strong correlation.Meanwhile, there is no significant correlation between the color diversity and SBE values(p > 0.05). However, the Pearson correlation coefficients are 0.807(winter) and - 0.747(summer), indicating strong correlation.This study provides an in-depth examination of the Canal landscape color, it is hoped to promote the systematic and scientific study of landscape colors and provide a theoretical basis for the scientific design of heritage landscape color.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7500"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis and evaluation of winter and summer landscape colors in the Yangzhou ancient Canal utilizing deep learning.\",\"authors\":\"Yanyan Wang, Jiangling Qian, Jiajie Cao, Rong Fan, Xunyu Han\",\"doi\":\"10.1038/s41598-025-91483-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Color is an important index for human visual evaluation of landscape, and it is also a key factor affecting people's recognition and experience of heritage landscape. In this study, five important sites of the Yangzhou Grand Canal were selected for the color quantification analysis by using the Deep Learning(DL) scene parsing algorithm. The color characteristics of the winter and summer landscape of the five sites were evaluated as well as the Scenic Beauty Estimation (SBE) value. Furthermore, the correlation analysis between the color characteristics and the SBE value was established in order to study the relationship between color characteristics and the landscape beauty. The main results are as follows: ①.The dominant color of the five sites is blue and green, the building color is mainly orange and yellow in both winter and summer. The dominant plant color in five sites is green in summer, whereas in winter, changes to yellow(Site5:YZJGD) or cyan(Site1:DGGD, Site3:GZGD); ②.The overall color saturation is low in winter with the percentages of Very Low Saturation in almost each site(except site5:YZJGD)reach 80-98%. Summer has Medium Saturation colors, the percentage of Mid Saturation of sky in Site 2(GMS) in summer is 44.87%. ③. The landscapes have low brightness in winter and higher brightness in summer in all sites, sky is the only category whose High Brightness value exceeds 50% in both seasons.And in winter, landscapes are most prevalent in Low Brightness and Medium Brightness. In summer, the percentages of Medium Brightness and High Brightness increase.④.The color diversity of the sites in winter varies significantly, whereas the color diversity of the sites in summer varies slightly.The highest color diversity of plants is found in DGGD(Diversity > 1.5). ⑤.In winter, the highest SBE value is found in Site2:GMS(0.5956), and the lowest SBE value is found in Site5:YZJGD(- 0.8216),which is a large gap(1.4172).The highest average SBE value is in Site2:GMS(0.5062), followed by Site3:GZGD (0.2091), which both have average values greater than zero. ⑥.Correlation analysis revealed that there is no significant correlation between the saturation and SBE values(p > 0.05).However, the Pearson correlation coefficients which are - 0.625(winter) and 0.689(summer) indicate strong correlation.Meanwhile, there is no significant correlation between the color diversity and SBE values(p > 0.05). However, the Pearson correlation coefficients are 0.807(winter) and - 0.747(summer), indicating strong correlation.This study provides an in-depth examination of the Canal landscape color, it is hoped to promote the systematic and scientific study of landscape colors and provide a theoretical basis for the scientific design of heritage landscape color.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"7500\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91483-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91483-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

色彩是人类视觉评价景观的重要指标,也是影响人们对遗产景观认知和体验的关键因素。本研究采用深度学习场景解析算法,选取扬州大运河5个重要遗址进行色彩量化分析。对5个站点冬、夏季景观色彩特征进行了评价,并对SBE值进行了评价。进一步,建立色彩特征与SBE值的相关性分析,研究色彩特征与景观美之间的关系。主要研究结果如下:①。五个场地的主色调为蓝色和绿色,冬季和夏季的建筑颜色以橙色和黄色为主。5个站点的植物夏季以绿色为主,冬季以黄色(Site5:YZJGD)或青色(Site1:DGGD, Site3:GZGD)为主;②.冬季整体色彩饱和度较低,除site5:YZJGD外,几乎每个站点的Very low saturation百分比都达到80-98%。夏季为中饱和度颜色,站点2(GMS)夏季天空中饱和度百分比为44.87%。③。所有站点的景观都呈现冬季低亮度、夏季高亮度的特征,只有天空的高亮度值在两个季节都超过50%。在冬季,景观以低亮度和中亮度最为普遍。夏季,“中亮度”和“高亮度”的比例增加。冬季站点的颜色多样性变化显著,而夏季站点的颜色多样性变化较小。植物颜色多样性最高的是DGGD(diversity bbb1.5)。⑤。冬季,SBE值最高的是Site2:GMS(0.5956),最低的是Site5:YZJGD(- 0.8216),两者差距较大(1.4172)。平均SBE值最高的是Site2:GMS(0.5062),其次是Site3:GZGD(0.2091),平均值均大于零。⑥。相关分析显示,饱和度与SBE值无显著相关(p < 0.05)。然而,Pearson相关系数为- 0.625(冬季)和0.689(夏季),表明相关性强。同时,颜色多样性与SBE值之间无显著相关(p < 0.05)。但Pearson相关系数分别为0.807(冬季)和- 0.747(夏季),相关性较强。本研究对运河景观色彩进行了深入的考察,希望能促进景观色彩的系统化、科学化研究,为遗产景观色彩的科学设计提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative analysis and evaluation of winter and summer landscape colors in the Yangzhou ancient Canal utilizing deep learning.

Color is an important index for human visual evaluation of landscape, and it is also a key factor affecting people's recognition and experience of heritage landscape. In this study, five important sites of the Yangzhou Grand Canal were selected for the color quantification analysis by using the Deep Learning(DL) scene parsing algorithm. The color characteristics of the winter and summer landscape of the five sites were evaluated as well as the Scenic Beauty Estimation (SBE) value. Furthermore, the correlation analysis between the color characteristics and the SBE value was established in order to study the relationship between color characteristics and the landscape beauty. The main results are as follows: ①.The dominant color of the five sites is blue and green, the building color is mainly orange and yellow in both winter and summer. The dominant plant color in five sites is green in summer, whereas in winter, changes to yellow(Site5:YZJGD) or cyan(Site1:DGGD, Site3:GZGD); ②.The overall color saturation is low in winter with the percentages of Very Low Saturation in almost each site(except site5:YZJGD)reach 80-98%. Summer has Medium Saturation colors, the percentage of Mid Saturation of sky in Site 2(GMS) in summer is 44.87%. ③. The landscapes have low brightness in winter and higher brightness in summer in all sites, sky is the only category whose High Brightness value exceeds 50% in both seasons.And in winter, landscapes are most prevalent in Low Brightness and Medium Brightness. In summer, the percentages of Medium Brightness and High Brightness increase.④.The color diversity of the sites in winter varies significantly, whereas the color diversity of the sites in summer varies slightly.The highest color diversity of plants is found in DGGD(Diversity > 1.5). ⑤.In winter, the highest SBE value is found in Site2:GMS(0.5956), and the lowest SBE value is found in Site5:YZJGD(- 0.8216),which is a large gap(1.4172).The highest average SBE value is in Site2:GMS(0.5062), followed by Site3:GZGD (0.2091), which both have average values greater than zero. ⑥.Correlation analysis revealed that there is no significant correlation between the saturation and SBE values(p > 0.05).However, the Pearson correlation coefficients which are - 0.625(winter) and 0.689(summer) indicate strong correlation.Meanwhile, there is no significant correlation between the color diversity and SBE values(p > 0.05). However, the Pearson correlation coefficients are 0.807(winter) and - 0.747(summer), indicating strong correlation.This study provides an in-depth examination of the Canal landscape color, it is hoped to promote the systematic and scientific study of landscape colors and provide a theoretical basis for the scientific design of heritage landscape color.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信