基于多纳米粒子的复合材料在计算机断层扫描应用中的 X 射线诊断屏蔽:蒙特卡罗研究。

IF 1.5 4区 环境科学与生态学 Q3 BIOLOGY
Sofiene Mansouri
{"title":"基于多纳米粒子的复合材料在计算机断层扫描应用中的 X 射线诊断屏蔽:蒙特卡罗研究。","authors":"Sofiene Mansouri","doi":"10.1007/s00411-025-01116-4","DOIUrl":null,"url":null,"abstract":"<p><p>While numerous studies have investigated the impact of various nanoparticles (NPs) in polymer matrices for radiation shielding, there is a notable gap in the literature regarding a comprehensive examination of both individual and combined selected NPs with functional polymers. This study aims to address this gap by systematically evaluating the synergistic potential of multiple high-Z NPs and specialized polymer matrices in radiation shielding design, particularly for computed tomography (CT) applications. A single and mixture range of NPs, including Gd<sub>2</sub>O<sub>3</sub>, Sm<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, HfO<sub>2</sub>, IrO<sub>2</sub>, Bi<sub>2</sub>O<sub>3</sub>, and WO<sub>3</sub>, were combined with polymers such as chlorinated polyvinyl chloride (CPVC), polychlorostyrene (PCS), polytrifluorochloroethylene (PTFCE), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polyvinylidene chloride (PVDC) which served as matrices. By means of Geant4 Monte Carlo simulations, the study assessed the shielding effectiveness of these nanocomposites at various X-ray energies (80, 100, 120, and 140 kVp). The results revealed that nanocomposites containing Sm<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub> exhibited superior X-ray attenuation at 80 and 100 kVp, while the HfO<sub>2</sub> nanocomposite demonstrated enhanced shielding at 120 and 140 kVp. Additionally, multi-filler nanocomposites with 30 wt% of Sm<sub>2</sub>O<sub>3</sub> + HfO<sub>2</sub> (SmHf) and Gd<sub>2</sub>O<sub>3</sub> + Bi<sub>2</sub>O<sub>3</sub> (GdBi) exhibited improved performance at 80 and 140 kVp, respectively. Notably, the 30 wt% Gd<sub>2</sub>O<sub>3</sub> + IrO<sub>2</sub> (GdIr) multi-filler nanocomposite outperformed others at 100 and 120 kVp. It is concluded that a combination of NPs with K-edge values close to the mean energy of the investigated X-ray spectra provide better shielding capabilities than single NPs, highlighting their potential for applications in radiation protection.</p>","PeriodicalId":21002,"journal":{"name":"Radiation and Environmental Biophysics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-nanoparticle-based composite for diagnostic X-ray shielding in computed tomography applications: a Monte Carlo study.\",\"authors\":\"Sofiene Mansouri\",\"doi\":\"10.1007/s00411-025-01116-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While numerous studies have investigated the impact of various nanoparticles (NPs) in polymer matrices for radiation shielding, there is a notable gap in the literature regarding a comprehensive examination of both individual and combined selected NPs with functional polymers. This study aims to address this gap by systematically evaluating the synergistic potential of multiple high-Z NPs and specialized polymer matrices in radiation shielding design, particularly for computed tomography (CT) applications. A single and mixture range of NPs, including Gd<sub>2</sub>O<sub>3</sub>, Sm<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, HfO<sub>2</sub>, IrO<sub>2</sub>, Bi<sub>2</sub>O<sub>3</sub>, and WO<sub>3</sub>, were combined with polymers such as chlorinated polyvinyl chloride (CPVC), polychlorostyrene (PCS), polytrifluorochloroethylene (PTFCE), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polyvinylidene chloride (PVDC) which served as matrices. By means of Geant4 Monte Carlo simulations, the study assessed the shielding effectiveness of these nanocomposites at various X-ray energies (80, 100, 120, and 140 kVp). The results revealed that nanocomposites containing Sm<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub> exhibited superior X-ray attenuation at 80 and 100 kVp, while the HfO<sub>2</sub> nanocomposite demonstrated enhanced shielding at 120 and 140 kVp. Additionally, multi-filler nanocomposites with 30 wt% of Sm<sub>2</sub>O<sub>3</sub> + HfO<sub>2</sub> (SmHf) and Gd<sub>2</sub>O<sub>3</sub> + Bi<sub>2</sub>O<sub>3</sub> (GdBi) exhibited improved performance at 80 and 140 kVp, respectively. Notably, the 30 wt% Gd<sub>2</sub>O<sub>3</sub> + IrO<sub>2</sub> (GdIr) multi-filler nanocomposite outperformed others at 100 and 120 kVp. It is concluded that a combination of NPs with K-edge values close to the mean energy of the investigated X-ray spectra provide better shielding capabilities than single NPs, highlighting their potential for applications in radiation protection.</p>\",\"PeriodicalId\":21002,\"journal\":{\"name\":\"Radiation and Environmental Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation and Environmental Biophysics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00411-025-01116-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation and Environmental Biophysics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00411-025-01116-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然许多研究已经调查了聚合物基质中各种纳米颗粒(NPs)对辐射屏蔽的影响,但关于单个和组合选定的NPs与功能聚合物的综合检查,文献中存在明显的空白。本研究旨在通过系统评估多种高z NPs和专用聚合物基质在辐射屏蔽设计中的协同潜力来解决这一差距,特别是在计算机断层扫描(CT)应用中。将Gd2O3、Sm2O3、CeO2、HfO2、IrO2、Bi2O3和WO3等单一和混合NPs与氯化聚氯乙烯(CPVC)、聚氯乙烯(PCS)、聚三氟氯乙烯(PTFCE)、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)和聚偏氯乙烯(PVDC)等聚合物结合作为基体。通过Geant4蒙特卡罗模拟,研究评估了这些纳米复合材料在不同x射线能量(80、100、120和140 kVp)下的屏蔽效果。结果表明,含Sm2O3和Gd2O3的纳米复合材料在80和100 kVp时表现出较好的x射线衰减,而含HfO2的纳米复合材料在120和140 kVp时表现出较强的屏蔽作用。此外,Sm2O3 + HfO2 (SmHf)和Gd2O3 + Bi2O3 (GdBi)质量分数分别为30 wt%和30 wt%时,复合材料在80和140 kVp时表现出更好的性能。值得注意的是,30 wt% Gd2O3 + IrO2 (GdIr)多填料纳米复合材料在100和120 kVp下的性能优于其他复合材料。综上所述,与单个NPs相比,k边值接近所研究x射线光谱平均能量的NPs组合具有更好的屏蔽能力,突出了它们在辐射防护中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-nanoparticle-based composite for diagnostic X-ray shielding in computed tomography applications: a Monte Carlo study.

While numerous studies have investigated the impact of various nanoparticles (NPs) in polymer matrices for radiation shielding, there is a notable gap in the literature regarding a comprehensive examination of both individual and combined selected NPs with functional polymers. This study aims to address this gap by systematically evaluating the synergistic potential of multiple high-Z NPs and specialized polymer matrices in radiation shielding design, particularly for computed tomography (CT) applications. A single and mixture range of NPs, including Gd2O3, Sm2O3, CeO2, HfO2, IrO2, Bi2O3, and WO3, were combined with polymers such as chlorinated polyvinyl chloride (CPVC), polychlorostyrene (PCS), polytrifluorochloroethylene (PTFCE), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polyvinylidene chloride (PVDC) which served as matrices. By means of Geant4 Monte Carlo simulations, the study assessed the shielding effectiveness of these nanocomposites at various X-ray energies (80, 100, 120, and 140 kVp). The results revealed that nanocomposites containing Sm2O3 and Gd2O3 exhibited superior X-ray attenuation at 80 and 100 kVp, while the HfO2 nanocomposite demonstrated enhanced shielding at 120 and 140 kVp. Additionally, multi-filler nanocomposites with 30 wt% of Sm2O3 + HfO2 (SmHf) and Gd2O3 + Bi2O3 (GdBi) exhibited improved performance at 80 and 140 kVp, respectively. Notably, the 30 wt% Gd2O3 + IrO2 (GdIr) multi-filler nanocomposite outperformed others at 100 and 120 kVp. It is concluded that a combination of NPs with K-edge values close to the mean energy of the investigated X-ray spectra provide better shielding capabilities than single NPs, highlighting their potential for applications in radiation protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
53
审稿时长
>36 weeks
期刊介绍: This journal is devoted to fundamental and applied issues in radiation research and biophysics. The topics may include: Biophysics of ionizing radiation: radiation physics and chemistry, radiation dosimetry, radiobiology, radioecology, biophysical foundations of medical applications of radiation, and radiation protection. Biological effects of radiation: experimental or theoretical work on molecular or cellular effects; relevance of biological effects for risk assessment; biological effects of medical applications of radiation; relevance of radiation for biosphere and in space; modelling of ecosystems; modelling of transport processes of substances in biotic systems. Risk assessment: epidemiological studies of cancer and non-cancer effects; quantification of risk including exposures to radiation and confounding factors Contributions to these topics may include theoretical-mathematical and experimental material, as well as description of new techniques relevant for the study of these issues. They can range from complex radiobiological phenomena to issues in health physics and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信