Omama Al Kharusi, Raya Al Mamari, Balaqis Al Hosni, Iqbal Al Amri, Mahmoud Al Fishawy, Mohamed-Rachid Boulassel, Yassine Bouchareb
{"title":"用于体外放射治疗体内剂量测定的二极管和 MOSFET 的调试和性能评估。","authors":"Omama Al Kharusi, Raya Al Mamari, Balaqis Al Hosni, Iqbal Al Amri, Mahmoud Al Fishawy, Mohamed-Rachid Boulassel, Yassine Bouchareb","doi":"10.1007/s00411-025-01117-3","DOIUrl":null,"url":null,"abstract":"<p><p>The precision of radiation therapy treatment depends on several calibration and quality assurance processes. In-vivo dosimetry (IVD) is used in external beam radiotherapy to evaluate the delivered versus planned dose as a patient-specific quality assurance verification procedure. This study aimed at assessing the performance of diodes (EDP-103G and EDP-203G) and metal oxide semiconductor field-effect transistors (MOSFETs) and corresponding correction factors followed by IVD evaluation in different treatment configurations. Linearity, stability, gantry angle, field size, and source-to-subject distance (SSD) were assessed across various photon energies, with correction factors determined. To minimize patient movement uncertainty, the study utilized the Alderson Rando phantom to replicate clinical setups, comparing diode and MOSFET dose readings to treatment planning system (TPS) doses. Diodes and MOSFETs were evaluated across different photon energy levels for brain, chest, and pelvis planning sites. Diodes and MOSFETs demonstrated good stability and linearity at the different utilized photon beams. Data analysis showed that MOSFETs had a slightly higher sensitivity compared to diodes in gantry angle, field size and SSD corrections. Regarding the validation process after applying the correction factors, dose variations between diode readings and TPS doses were found to be 1.89%, 1.58%, and 6.72% for brain, breast, and pelvis, respectively. In contrast, MOSFET readings were 2.40% for brain, 2.03% for chest, and 2.03% for pelvis. It is concluded that, while diode and MOSFET dosimeters both allowed for accurate patient dose measurements, for different anatomical sites, MOSFETs demonstrated better performance for the pelvis compared to diodes.</p>","PeriodicalId":21002,"journal":{"name":"Radiation and Environmental Biophysics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commissioning and performance assessment of diodes and MOSFETs in in-vivo dosimetry for external beam radiation therapy.\",\"authors\":\"Omama Al Kharusi, Raya Al Mamari, Balaqis Al Hosni, Iqbal Al Amri, Mahmoud Al Fishawy, Mohamed-Rachid Boulassel, Yassine Bouchareb\",\"doi\":\"10.1007/s00411-025-01117-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precision of radiation therapy treatment depends on several calibration and quality assurance processes. In-vivo dosimetry (IVD) is used in external beam radiotherapy to evaluate the delivered versus planned dose as a patient-specific quality assurance verification procedure. This study aimed at assessing the performance of diodes (EDP-103G and EDP-203G) and metal oxide semiconductor field-effect transistors (MOSFETs) and corresponding correction factors followed by IVD evaluation in different treatment configurations. Linearity, stability, gantry angle, field size, and source-to-subject distance (SSD) were assessed across various photon energies, with correction factors determined. To minimize patient movement uncertainty, the study utilized the Alderson Rando phantom to replicate clinical setups, comparing diode and MOSFET dose readings to treatment planning system (TPS) doses. Diodes and MOSFETs were evaluated across different photon energy levels for brain, chest, and pelvis planning sites. Diodes and MOSFETs demonstrated good stability and linearity at the different utilized photon beams. Data analysis showed that MOSFETs had a slightly higher sensitivity compared to diodes in gantry angle, field size and SSD corrections. Regarding the validation process after applying the correction factors, dose variations between diode readings and TPS doses were found to be 1.89%, 1.58%, and 6.72% for brain, breast, and pelvis, respectively. In contrast, MOSFET readings were 2.40% for brain, 2.03% for chest, and 2.03% for pelvis. It is concluded that, while diode and MOSFET dosimeters both allowed for accurate patient dose measurements, for different anatomical sites, MOSFETs demonstrated better performance for the pelvis compared to diodes.</p>\",\"PeriodicalId\":21002,\"journal\":{\"name\":\"Radiation and Environmental Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation and Environmental Biophysics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00411-025-01117-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation and Environmental Biophysics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00411-025-01117-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Commissioning and performance assessment of diodes and MOSFETs in in-vivo dosimetry for external beam radiation therapy.
The precision of radiation therapy treatment depends on several calibration and quality assurance processes. In-vivo dosimetry (IVD) is used in external beam radiotherapy to evaluate the delivered versus planned dose as a patient-specific quality assurance verification procedure. This study aimed at assessing the performance of diodes (EDP-103G and EDP-203G) and metal oxide semiconductor field-effect transistors (MOSFETs) and corresponding correction factors followed by IVD evaluation in different treatment configurations. Linearity, stability, gantry angle, field size, and source-to-subject distance (SSD) were assessed across various photon energies, with correction factors determined. To minimize patient movement uncertainty, the study utilized the Alderson Rando phantom to replicate clinical setups, comparing diode and MOSFET dose readings to treatment planning system (TPS) doses. Diodes and MOSFETs were evaluated across different photon energy levels for brain, chest, and pelvis planning sites. Diodes and MOSFETs demonstrated good stability and linearity at the different utilized photon beams. Data analysis showed that MOSFETs had a slightly higher sensitivity compared to diodes in gantry angle, field size and SSD corrections. Regarding the validation process after applying the correction factors, dose variations between diode readings and TPS doses were found to be 1.89%, 1.58%, and 6.72% for brain, breast, and pelvis, respectively. In contrast, MOSFET readings were 2.40% for brain, 2.03% for chest, and 2.03% for pelvis. It is concluded that, while diode and MOSFET dosimeters both allowed for accurate patient dose measurements, for different anatomical sites, MOSFETs demonstrated better performance for the pelvis compared to diodes.
期刊介绍:
This journal is devoted to fundamental and applied issues in radiation research and biophysics. The topics may include:
Biophysics of ionizing radiation: radiation physics and chemistry, radiation dosimetry, radiobiology, radioecology, biophysical foundations of medical applications of radiation, and radiation protection.
Biological effects of radiation: experimental or theoretical work on molecular or cellular effects; relevance of biological effects for risk assessment; biological effects of medical applications of radiation; relevance of radiation for biosphere and in space; modelling of ecosystems; modelling of transport processes of substances in biotic systems.
Risk assessment: epidemiological studies of cancer and non-cancer effects; quantification of risk including exposures to radiation and confounding factors
Contributions to these topics may include theoretical-mathematical and experimental material, as well as description of new techniques relevant for the study of these issues. They can range from complex radiobiological phenomena to issues in health physics and environmental protection.