参数可预测性及响应精度和响应时间联合建模对能力估计的影响。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Maryam Pezeshki, Susan Embretson
{"title":"参数可预测性及响应精度和响应时间联合建模对能力估计的影响。","authors":"Maryam Pezeshki, Susan Embretson","doi":"10.1177/01466216251322646","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain test quality, a large supply of items is typically desired. Automatic item generation can result in a reduction in cost and labor, especially if the generated items have predictable item parameters and thus possibly reducing or eliminating the need for empirical tryout. However, the effect of different levels of item parameter predictability on the accuracy of trait estimation using item response theory models is unclear. If predictability is lower, adding response time as a collateral source of information may mitigate the effect on trait estimation accuracy. The present study investigates the impact of varying item parameter predictability on trait estimation accuracy, along with the impact of adding response time as a collateral source of information. Results indicated that trait estimation accuracy using item family model-based item parameters differed only slightly from using known item parameters. Somewhat larger trait estimation errors resulted from using cognitive complexity features to predict item parameters. Further, adding response times to the model resulted in more accurate trait estimation for tests with lower item difficulty levels (e.g., achievement tests). Implications for item generation and response processes aspect of validity are discussed.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251322646"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Parameter Predictability and Joint Modeling of Response Accuracy and Response Time on Ability Estimates.\",\"authors\":\"Maryam Pezeshki, Susan Embretson\",\"doi\":\"10.1177/01466216251322646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To maintain test quality, a large supply of items is typically desired. Automatic item generation can result in a reduction in cost and labor, especially if the generated items have predictable item parameters and thus possibly reducing or eliminating the need for empirical tryout. However, the effect of different levels of item parameter predictability on the accuracy of trait estimation using item response theory models is unclear. If predictability is lower, adding response time as a collateral source of information may mitigate the effect on trait estimation accuracy. The present study investigates the impact of varying item parameter predictability on trait estimation accuracy, along with the impact of adding response time as a collateral source of information. Results indicated that trait estimation accuracy using item family model-based item parameters differed only slightly from using known item parameters. Somewhat larger trait estimation errors resulted from using cognitive complexity features to predict item parameters. Further, adding response times to the model resulted in more accurate trait estimation for tests with lower item difficulty levels (e.g., achievement tests). Implications for item generation and response processes aspect of validity are discussed.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\" \",\"pages\":\"01466216251322646\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216251322646\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251322646","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了保持测试质量,通常需要大量的项目供应。自动项目生成可以减少成本和劳动力,特别是如果生成的项目具有可预测的项目参数,从而可能减少或消除经验试验的需要。然而,不同程度的项目参数可预测性对项目反应理论模型特质估计准确性的影响尚不清楚。如果可预测性较低,增加响应时间作为信息的附带来源可能会减轻对特征估计准确性的影响。本研究探讨了不同项目参数可预测性对特质估计准确性的影响,以及增加反应时间作为辅助信息源的影响。结果表明,使用基于项目族模型的项目参数与使用已知项目参数的特质估计准确率差异不大。使用认知复杂性特征预测项目参数会产生较大的特征估计误差。此外,在模型中增加反应时间,可以对项目难度较低的测试(例如成就测试)进行更准确的特征估计。讨论了项目生成和反应过程对效度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Parameter Predictability and Joint Modeling of Response Accuracy and Response Time on Ability Estimates.

To maintain test quality, a large supply of items is typically desired. Automatic item generation can result in a reduction in cost and labor, especially if the generated items have predictable item parameters and thus possibly reducing or eliminating the need for empirical tryout. However, the effect of different levels of item parameter predictability on the accuracy of trait estimation using item response theory models is unclear. If predictability is lower, adding response time as a collateral source of information may mitigate the effect on trait estimation accuracy. The present study investigates the impact of varying item parameter predictability on trait estimation accuracy, along with the impact of adding response time as a collateral source of information. Results indicated that trait estimation accuracy using item family model-based item parameters differed only slightly from using known item parameters. Somewhat larger trait estimation errors resulted from using cognitive complexity features to predict item parameters. Further, adding response times to the model resulted in more accurate trait estimation for tests with lower item difficulty levels (e.g., achievement tests). Implications for item generation and response processes aspect of validity are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信