Lynnette Fernandez-Cuesta, Nicolas Alcala, Emilie Mathian, Jules Derks, Chrissie Thirlwell, Talya Dayton, Ilaria Marinoni, Aurel Perren, Thomas Walter, Matthieu Foll
{"title":"神经内分泌肿瘤现有知识的基础科学和转化意义。","authors":"Lynnette Fernandez-Cuesta, Nicolas Alcala, Emilie Mathian, Jules Derks, Chrissie Thirlwell, Talya Dayton, Ilaria Marinoni, Aurel Perren, Thomas Walter, Matthieu Foll","doi":"10.1172/JCI186702","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 5","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Basic science and translational implications of current knowledge on neuroendocrine tumors.\",\"authors\":\"Lynnette Fernandez-Cuesta, Nicolas Alcala, Emilie Mathian, Jules Derks, Chrissie Thirlwell, Talya Dayton, Ilaria Marinoni, Aurel Perren, Thomas Walter, Matthieu Foll\",\"doi\":\"10.1172/JCI186702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\"135 5\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI186702\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI186702","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Basic science and translational implications of current knowledge on neuroendocrine tumors.
Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.