{"title":"通过全外显子组测序和深度硅学调查,基于药物基因组学的疼痛、抗炎和免疫调节药物通路变异的检测揭示了新型化学致癌物质和癌症风险。","authors":"Alireza Sharafshah, Majid Motovali-Bashi, Parvaneh Keshavarz","doi":"10.30476/ijms.2024.101852.3450","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Next-Generation Sequencing (NGS) methods specifically Whole-Exome Sequencing (WES) have demonstrated promising findings with a high accuracy of 91%-99% in Pharmacogenomics (PGx). A PGx-based panel can be utilized to minimize adverse drug reactions (ADRs) and maximize the treatment efficacy. Remarkably, Cancer Pain Management (CPM) is a cutting-edge concept in modern medicine. Thus, this study aimed to investigate the WES results by a PGx-based panel containing genes involved in Pain, Anti-inflammatory, and Immunomodulating agents (PAIma) signaling pathways.</p><p><strong>Methods: </strong>A total of 200 unrelated Iranians (100 western and 100 northern) were included. 100 WES results were analyzed through the PAIma panel. After DNA extraction, 100 samples were genotyped by Multiplex-Amplification-Refractory Mutation System (ARMS) PCR. A primary <i>in silico</i> investigation performed on 128 candidate genes through Protein-Protein Interactions (PPIs) and Gene-miRNA Interactions (GMIs) via the STRING database, and miRTargetLink2, respectively. Additionally, Enrichment Analysis (EA) was applied to find the unknown interplays among these three major pathways by Enrichr.</p><p><strong>Results: </strong>55,590 annotations through 21 curated pathways were filtered, 900 variants were found, and 128 genes were refined. Finally, 54 candidate variants (48 non-synonymous single nucleotide variants (nsSNVs), 2 stop-gained, 1 frameshift, and 3 splicing) remained.</p><p><strong>Conclusion: </strong>Conclusively, six potentially actionable variants including rs1695 (<i>GSTP1</i>), rs628031 (<i>SLC22A1</i>), rs17863778 (<i>UGT1A7</i>), rs16947 (<i>CYP2D6</i>), rs2257401 (<i>CYP3A7</i>), and rs2515641 (<i>CYP2E1</i>) had the most deviations among Iranians, compared with the reference genome, which should be genotyped for drug prescribing. Remarkably, PPIs, GMIs, and EA revealed potential risks of carcinogenesis and cancer phenotypes resulting from PAIma pathways genes.</p>","PeriodicalId":14510,"journal":{"name":"Iranian Journal of Medical Sciences","volume":"50 2","pages":"98-111"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacogenomics-Based Detection of Variants Involved in Pain, Anti-inflammatory and Immunomodulating Agents Pathways by Whole Exome Sequencing and Deep <i>in Silico</i> Investigations Revealed Novel Chemical Carcinogenesis and Cancer Risks.\",\"authors\":\"Alireza Sharafshah, Majid Motovali-Bashi, Parvaneh Keshavarz\",\"doi\":\"10.30476/ijms.2024.101852.3450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Next-Generation Sequencing (NGS) methods specifically Whole-Exome Sequencing (WES) have demonstrated promising findings with a high accuracy of 91%-99% in Pharmacogenomics (PGx). A PGx-based panel can be utilized to minimize adverse drug reactions (ADRs) and maximize the treatment efficacy. Remarkably, Cancer Pain Management (CPM) is a cutting-edge concept in modern medicine. Thus, this study aimed to investigate the WES results by a PGx-based panel containing genes involved in Pain, Anti-inflammatory, and Immunomodulating agents (PAIma) signaling pathways.</p><p><strong>Methods: </strong>A total of 200 unrelated Iranians (100 western and 100 northern) were included. 100 WES results were analyzed through the PAIma panel. After DNA extraction, 100 samples were genotyped by Multiplex-Amplification-Refractory Mutation System (ARMS) PCR. A primary <i>in silico</i> investigation performed on 128 candidate genes through Protein-Protein Interactions (PPIs) and Gene-miRNA Interactions (GMIs) via the STRING database, and miRTargetLink2, respectively. Additionally, Enrichment Analysis (EA) was applied to find the unknown interplays among these three major pathways by Enrichr.</p><p><strong>Results: </strong>55,590 annotations through 21 curated pathways were filtered, 900 variants were found, and 128 genes were refined. Finally, 54 candidate variants (48 non-synonymous single nucleotide variants (nsSNVs), 2 stop-gained, 1 frameshift, and 3 splicing) remained.</p><p><strong>Conclusion: </strong>Conclusively, six potentially actionable variants including rs1695 (<i>GSTP1</i>), rs628031 (<i>SLC22A1</i>), rs17863778 (<i>UGT1A7</i>), rs16947 (<i>CYP2D6</i>), rs2257401 (<i>CYP3A7</i>), and rs2515641 (<i>CYP2E1</i>) had the most deviations among Iranians, compared with the reference genome, which should be genotyped for drug prescribing. Remarkably, PPIs, GMIs, and EA revealed potential risks of carcinogenesis and cancer phenotypes resulting from PAIma pathways genes.</p>\",\"PeriodicalId\":14510,\"journal\":{\"name\":\"Iranian Journal of Medical Sciences\",\"volume\":\"50 2\",\"pages\":\"98-111\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30476/ijms.2024.101852.3450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30476/ijms.2024.101852.3450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Pharmacogenomics-Based Detection of Variants Involved in Pain, Anti-inflammatory and Immunomodulating Agents Pathways by Whole Exome Sequencing and Deep in Silico Investigations Revealed Novel Chemical Carcinogenesis and Cancer Risks.
Background: Next-Generation Sequencing (NGS) methods specifically Whole-Exome Sequencing (WES) have demonstrated promising findings with a high accuracy of 91%-99% in Pharmacogenomics (PGx). A PGx-based panel can be utilized to minimize adverse drug reactions (ADRs) and maximize the treatment efficacy. Remarkably, Cancer Pain Management (CPM) is a cutting-edge concept in modern medicine. Thus, this study aimed to investigate the WES results by a PGx-based panel containing genes involved in Pain, Anti-inflammatory, and Immunomodulating agents (PAIma) signaling pathways.
Methods: A total of 200 unrelated Iranians (100 western and 100 northern) were included. 100 WES results were analyzed through the PAIma panel. After DNA extraction, 100 samples were genotyped by Multiplex-Amplification-Refractory Mutation System (ARMS) PCR. A primary in silico investigation performed on 128 candidate genes through Protein-Protein Interactions (PPIs) and Gene-miRNA Interactions (GMIs) via the STRING database, and miRTargetLink2, respectively. Additionally, Enrichment Analysis (EA) was applied to find the unknown interplays among these three major pathways by Enrichr.
Results: 55,590 annotations through 21 curated pathways were filtered, 900 variants were found, and 128 genes were refined. Finally, 54 candidate variants (48 non-synonymous single nucleotide variants (nsSNVs), 2 stop-gained, 1 frameshift, and 3 splicing) remained.
Conclusion: Conclusively, six potentially actionable variants including rs1695 (GSTP1), rs628031 (SLC22A1), rs17863778 (UGT1A7), rs16947 (CYP2D6), rs2257401 (CYP3A7), and rs2515641 (CYP2E1) had the most deviations among Iranians, compared with the reference genome, which should be genotyped for drug prescribing. Remarkably, PPIs, GMIs, and EA revealed potential risks of carcinogenesis and cancer phenotypes resulting from PAIma pathways genes.
期刊介绍:
The Iranian Journal of Medical Sciences (IJMS) is an international quarterly biomedical publication, which is sponsored by Shiraz University of Medical Sciences. The IJMS intends to provide a scientific medium of communication for researchers throughout the globe. The journal welcomes original clinical articles as well as clinically oriented basic science research experiences on prevalent diseases in the region and analysis of various regional problems.