模拟乳酸阈值2与MLSS在跑步和骑行中的比较。

IF 2 4区 医学 Q2 SPORT SCIENCES
Sebastian Keller, Jonas Fischer, Sanghyeon Ji, Lukas Zwingmann, Patrick Wahl
{"title":"模拟乳酸阈值2与MLSS在跑步和骑行中的比较。","authors":"Sebastian Keller, Jonas Fischer, Sanghyeon Ji, Lukas Zwingmann, Patrick Wahl","doi":"10.1055/a-2550-4988","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated (1) the agreement of modeled lactate threshold 2 using peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 with the maximal lactate steady state in running and cycling; (2) the impact of different cost of locomotion determination methods on the accuracy of the model and (3) the contributions of peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 to the work rate at maximal lactate steady state. Thirty-four endurance-trained athletes (27.7±6.9 y, 56.2±5.5 ml∙kg<sup>-1</sup>∙min<sup>-1</sup>) completed an incremental step test on a treadmill or a cycling ergometer. Peak oxygen uptake, cost of locomotion at lactate threshold 1, at 80% of peak oxygen uptake, and at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2 were assessed. Two to five 30-minute constant work rate tests were performed for maximal lactate steady state determination. Moderate to good agreement was found between modeled work rate corresponding to lactate threshold 2 and the maximal lactate steady state for running and cycling (intraclass correlation coefficient≥0.698) with the smallest mean difference (±limits of agreement) for cost of locomotion determined at lactate threshold 2 with -2.0±5.2 and -0.9±6.0%, respectively. Overall, 83 and 79% of the variance in the maximal lactate steady state was explained by peak oxygen uptake, cost of locomotion determined at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2, respectively. Peak oxygen uptake and cost of locomotion determined at lactate threshold 2 contributed the most to the regression <i>R</i> <sup>2</sup> in running (54 and 40%) and cycling (74 and 51%), while fractional utilization of peak oxygen uptake at lactate threshold 2 had the smallest contribution (4 and 5%). Based on the high accuracy of the model with the major contribution of peak oxygen uptake and cost of locomotion determined at lactate threshold 2, the work rate corresponding to the maximal lactate steady state could be improved focusing on these two variables during training.</p>","PeriodicalId":14439,"journal":{"name":"International journal of sports medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of modeled lactate threshold 2 with maximal lactate steady state in running and cycling.\",\"authors\":\"Sebastian Keller, Jonas Fischer, Sanghyeon Ji, Lukas Zwingmann, Patrick Wahl\",\"doi\":\"10.1055/a-2550-4988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated (1) the agreement of modeled lactate threshold 2 using peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 with the maximal lactate steady state in running and cycling; (2) the impact of different cost of locomotion determination methods on the accuracy of the model and (3) the contributions of peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 to the work rate at maximal lactate steady state. Thirty-four endurance-trained athletes (27.7±6.9 y, 56.2±5.5 ml∙kg<sup>-1</sup>∙min<sup>-1</sup>) completed an incremental step test on a treadmill or a cycling ergometer. Peak oxygen uptake, cost of locomotion at lactate threshold 1, at 80% of peak oxygen uptake, and at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2 were assessed. Two to five 30-minute constant work rate tests were performed for maximal lactate steady state determination. Moderate to good agreement was found between modeled work rate corresponding to lactate threshold 2 and the maximal lactate steady state for running and cycling (intraclass correlation coefficient≥0.698) with the smallest mean difference (±limits of agreement) for cost of locomotion determined at lactate threshold 2 with -2.0±5.2 and -0.9±6.0%, respectively. Overall, 83 and 79% of the variance in the maximal lactate steady state was explained by peak oxygen uptake, cost of locomotion determined at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2, respectively. Peak oxygen uptake and cost of locomotion determined at lactate threshold 2 contributed the most to the regression <i>R</i> <sup>2</sup> in running (54 and 40%) and cycling (74 and 51%), while fractional utilization of peak oxygen uptake at lactate threshold 2 had the smallest contribution (4 and 5%). Based on the high accuracy of the model with the major contribution of peak oxygen uptake and cost of locomotion determined at lactate threshold 2, the work rate corresponding to the maximal lactate steady state could be improved focusing on these two variables during training.</p>\",\"PeriodicalId\":14439,\"journal\":{\"name\":\"International journal of sports medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sports medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2550-4988\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2550-4988","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究调查了1。模拟乳酸阈值2 (modLT2)使用最大摄氧量(V氧峰值),运动成本(C),和分数利用率(V氧峰值)在LT2 (LT2%)与最大乳酸稳态(MLSS)在跑步和骑自行车的一致性。2.不同的C测定方法对模型精度的影响。3.vo2峰、C和LT2%对MLSS工作速率的贡献。34名耐力训练的运动员(27.7±6.9岁,56.2±5.5 ml∙kg-1∙min-1)在跑步机或自行车测力仪上完成了增量步数测试。测定V / o2峰值、乳酸阈值1时的C、80%的V / o2峰值和LT2 (CLT2)、LT2%。进行2 ~ 5次30 min恒功速率试验测定MLSS。modLT2和MLSS在跑步和骑车方面的一致性中等至良好(ICC≥0.698),CLT2的平均差异最小(±一致限),分别为-2.0±5.2%和-0.9±6.0%。vo2峰、CLT2和lt2分别解释了MLSS总方差的83%和79%。在跑步和骑行中,V / o2峰值和CLT2对回归R2的贡献最大(分别为54%和40%),而LT2%对回归R2的贡献最小(分别为4%和5%)。基于以vo2峰值和CLT2为主要贡献变量的模型具有较高的准确率,在训练过程中可以围绕这两个变量来改进MLSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of modeled lactate threshold 2 with maximal lactate steady state in running and cycling.

This study investigated (1) the agreement of modeled lactate threshold 2 using peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 with the maximal lactate steady state in running and cycling; (2) the impact of different cost of locomotion determination methods on the accuracy of the model and (3) the contributions of peak oxygen uptake, cost of locomotion, and fractional utilization of peak oxygen uptake at lactate threshold 2 to the work rate at maximal lactate steady state. Thirty-four endurance-trained athletes (27.7±6.9 y, 56.2±5.5 ml∙kg-1∙min-1) completed an incremental step test on a treadmill or a cycling ergometer. Peak oxygen uptake, cost of locomotion at lactate threshold 1, at 80% of peak oxygen uptake, and at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2 were assessed. Two to five 30-minute constant work rate tests were performed for maximal lactate steady state determination. Moderate to good agreement was found between modeled work rate corresponding to lactate threshold 2 and the maximal lactate steady state for running and cycling (intraclass correlation coefficient≥0.698) with the smallest mean difference (±limits of agreement) for cost of locomotion determined at lactate threshold 2 with -2.0±5.2 and -0.9±6.0%, respectively. Overall, 83 and 79% of the variance in the maximal lactate steady state was explained by peak oxygen uptake, cost of locomotion determined at lactate threshold 2, and fractional utilization of peak oxygen uptake at lactate threshold 2, respectively. Peak oxygen uptake and cost of locomotion determined at lactate threshold 2 contributed the most to the regression R 2 in running (54 and 40%) and cycling (74 and 51%), while fractional utilization of peak oxygen uptake at lactate threshold 2 had the smallest contribution (4 and 5%). Based on the high accuracy of the model with the major contribution of peak oxygen uptake and cost of locomotion determined at lactate threshold 2, the work rate corresponding to the maximal lactate steady state could be improved focusing on these two variables during training.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
111
审稿时长
3-8 weeks
期刊介绍: The IJSM provides a forum for the publication of papers dealing with both basic and applied information that advance the field of sports medicine and exercise science, and offer a better understanding of biomedicine. The journal publishes original papers, reviews, short communications, and letters to the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信