外源氨基酸对番茄钇吸收和积累的影响。

IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ali Sajid, Sidra Naseer, Meiyu Ren, Jing Cui, Junliang Wu, Zhenggui Wei
{"title":"外源氨基酸对番茄钇吸收和积累的影响。","authors":"Ali Sajid, Sidra Naseer, Meiyu Ren, Jing Cui, Junliang Wu, Zhenggui Wei","doi":"10.1080/15226514.2025.2472746","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (<i>Solanum lycopersicum)</i>. To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g<sup>-1</sup>, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g<sup>-1</sup>. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h<sup>-1</sup>, which was significantly greater than those treated with amino acids (<i>p</i> < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L<sup>-1</sup>, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L<sup>-1</sup> and 212.95 ± 13.65 μmol L<sup>-1</sup>. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1033-1041"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of exogenous amino acids on yttrium uptake and accumulation in tomato (<i>Solanum lycopersicum</i>).\",\"authors\":\"Ali Sajid, Sidra Naseer, Meiyu Ren, Jing Cui, Junliang Wu, Zhenggui Wei\",\"doi\":\"10.1080/15226514.2025.2472746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (<i>Solanum lycopersicum)</i>. To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g<sup>-1</sup>, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g<sup>-1</sup>. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h<sup>-1</sup>, which was significantly greater than those treated with amino acids (<i>p</i> < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L<sup>-1</sup>, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L<sup>-1</sup> and 212.95 ± 13.65 μmol L<sup>-1</sup>. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1033-1041\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2472746\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2472746","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了外源氨基酸补充对番茄(Solanum lycopersicum)植株钇(Y)吸收、转运和积累的影响。了解氨基酸如何在霍格兰营养液中促进养分吸收和植物生长。结果表明,Y与谷氨酸(Y + Glu)配伍显著提高了叶片中Y的浓度,达到28.5±1.42µg -1,与组氨酸(Y + His)配伍显著降低了Y的浓度,为2.7±0.06µg -1。谷氨酸对提高木质部液中Y的积累尤为有效,对照植株的木质部液流率为0.27±0.008 g h-1,显著高于氨基酸处理(p -1),而色氨酸和天冬氨酸的浓度分别为109.92±14.43 μmol L-1和212.95±13.65 μmol L-1。这些结果表明,氨基酸的补充可以通过谷氨酸的应用显著提高番茄植株中Y的提取。需要通过植物修复进一步探索植物体内Y络合和转运的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of exogenous amino acids on yttrium uptake and accumulation in tomato (Solanum lycopersicum).

This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (Solanum lycopersicum). To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g-1, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g-1. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h-1, which was significantly greater than those treated with amino acids (p < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L-1, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L-1 and 212.95 ± 13.65 μmol L-1. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信