Alexander Aivazidis, Fani Memi, Vitalii Kleshchevnikov, Sezgin Er, Brian Clarke, Oliver Stegle, Omer Ali Bayraktar
{"title":"Cell2fate推断RNA速度模块以改进细胞命运预测。","authors":"Alexander Aivazidis, Fani Memi, Vitalii Kleshchevnikov, Sezgin Er, Brian Clarke, Oliver Stegle, Omer Ali Bayraktar","doi":"10.1038/s41592-025-02608-3","DOIUrl":null,"url":null,"abstract":"<p><p>RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"698-707"},"PeriodicalIF":36.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell2fate infers RNA velocity modules to improve cell fate prediction.\",\"authors\":\"Alexander Aivazidis, Fani Memi, Vitalii Kleshchevnikov, Sezgin Er, Brian Clarke, Oliver Stegle, Omer Ali Bayraktar\",\"doi\":\"10.1038/s41592-025-02608-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"698-707\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02608-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02608-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell2fate infers RNA velocity modules to improve cell fate prediction.
RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.