评估基于超导环路的 Fluxon 突触设备,以实现高能效神经形态计算。

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1511371
Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum
{"title":"评估基于超导环路的 Fluxon 突触设备,以实现高能效神经形态计算。","authors":"Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum","doi":"10.3389/fnins.2025.1511371","DOIUrl":null,"url":null,"abstract":"<p><p>With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1511371"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fluxon synapse device based on superconducting loops for energy efficient neuromorphic computing.\",\"authors\":\"Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum\",\"doi\":\"10.3389/fnins.2025.1511371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1511371\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1511371\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1511371","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of fluxon synapse device based on superconducting loops for energy efficient neuromorphic computing.

With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信