Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum
{"title":"评估基于超导环路的 Fluxon 突触设备,以实现高能效神经形态计算。","authors":"Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum","doi":"10.3389/fnins.2025.1511371","DOIUrl":null,"url":null,"abstract":"<p><p>With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1511371"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fluxon synapse device based on superconducting loops for energy efficient neuromorphic computing.\",\"authors\":\"Ashwani Kumar, Uday S Goteti, Ertugrul Cubukcu, Robert C Dynes, Duygu Kuzum\",\"doi\":\"10.3389/fnins.2025.1511371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1511371\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1511371\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1511371","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Evaluation of fluxon synapse device based on superconducting loops for energy efficient neuromorphic computing.
With Moore's law nearing its end due to the physical scaling limitations of CMOS technology, alternative computing approaches have gained considerable attention as ways to improve computing performance. Here, we evaluate performance prospects of a new approach based on disordered superconducting loops with Josephson-junctions for energy efficient neuromorphic computing. Synaptic weights can be stored as internal trapped fluxon states of three superconducting loops connected with multiple Josephson-junctions (JJ) and modulated by input signals applied in the form of discrete fluxons (quantized flux) in a controlled manner. The stable trapped fluxon state directs the incoming flux through different pathways with the flow statistics representing different synaptic weights. We explore implementation of matrix-vector-multiplication (MVM) operations using arrays of these fluxon synapse devices. We investigate the energy efficiency of online-learning of MNIST dataset. Our results suggest that the fluxon synapse array can provide ~100× reduction in energy consumption compared to other state-of-the-art synaptic devices. This work presents a proof-of-concept that will pave the way for development of high-speed and highly energy efficient neuromorphic computing systems based on superconducting materials.
期刊介绍:
Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.