杀线虫和促进植物生长的根瘤菌:控制半透叶黄和促进柑橘生长的可持续策略。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Btissam Zoubi, Mohamed Hijri, Fouad Mokrini, Abdelilah Iraqi Housseini, Ahmed Qaddoury
{"title":"杀线虫和促进植物生长的根瘤菌:控制半透叶黄和促进柑橘生长的可持续策略。","authors":"Btissam Zoubi, Mohamed Hijri, Fouad Mokrini, Abdelilah Iraqi Housseini, Ahmed Qaddoury","doi":"10.1007/s10123-025-00652-9","DOIUrl":null,"url":null,"abstract":"<p><p>Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 × 10<sup>5</sup>, 2.5 × 10<sup>4</sup>, 3.6 × 10<sup>3</sup>, and 1.2 × 10<sup>3</sup> cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 × 10<sup>5</sup> cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nematicidal and plant growth-promoting rhizobacteria: a sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth.\",\"authors\":\"Btissam Zoubi, Mohamed Hijri, Fouad Mokrini, Abdelilah Iraqi Housseini, Ahmed Qaddoury\",\"doi\":\"10.1007/s10123-025-00652-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 × 10<sup>5</sup>, 2.5 × 10<sup>4</sup>, 3.6 × 10<sup>3</sup>, and 1.2 × 10<sup>3</sup> cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 × 10<sup>5</sup> cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-025-00652-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00652-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

半透叶霉是一种土壤传播的病原菌,在世界范围内对柑橘作物造成了巨大的危害和经济损失。由于化学杀线虫剂对人类和环境的高毒性,生物防治细菌已成为控制柑橘线虫的一种有希望的替代方法。本研究旨在筛选控制半透线虫的菌株,并评估其对柑橘植株生长的影响。从柑桔侵染树的土壤和根系中共分离到107株细菌。其中5株菌株对半透线虫具有显著的杀线虫活性。每个菌株检测4种细菌密度:3.6 × 105、2.5 × 104、3.6 × 103、1.2 × 103细胞/ml。对这些菌株进行了单独和联合试验,以评估其疗效。经生理生化和分子(16S rRNA基因序列)分析,5株菌株分别为异变芽孢杆菌、假菌芽孢杆菌、单纯芽孢杆菌、蜡样芽孢杆菌和洞孔副球菌。雏鸟死亡率和卵孵化抑制与细菌浓度和暴露时间呈正相关。5种细菌联合使用96 h后死亡率最高,为100% (3.6 × 105个细胞/ml),蜡样芽孢杆菌单独使用死亡率为98.98%。细菌滤液的最大杀线虫活性一般在培养第4 ~第6天,与细菌生长和生物量的高峰相吻合。所选菌株还显示出产生吲哚乙酸和溶解磷的能力。在温室试验中,与对照相比,5个分离菌株最多可使半透螟种群减少62.96%。此外,所有根际细菌及其组合显著提高了植物的生长参数(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nematicidal and plant growth-promoting rhizobacteria: a sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth.

Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 × 105, 2.5 × 104, 3.6 × 103, and 1.2 × 103 cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 × 105 cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信