{"title":"基于深度学习的帕金森病手写螺旋和波浪图像诊断模型。","authors":"K Aditya Shastry","doi":"10.1007/s11596-025-00017-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.</p><p><strong>Methods: </strong>The study utilized a dataset of 204 images (102 spiral and 102 wave) from PD patients and healthy subjects. The images were preprocessed using the Histogram of Oriented Gradients (HOG) descriptor and augmented to increase dataset diversity. The DNN model was designed with an input layer, three convolutional layers, two max-pooling layers, two dropout layers, and two dense layers. The model was trained and evaluated using metrics such as accuracy, sensitivity, specificity, and loss. The DNN model was compared with nine ML models (random forest, logistic regression, AdaBoost, k-nearest neighbor, gradient boost, naïve Bayes, support vector machine, decision tree) and two DL models (convolutional neural network, DenseNet-201).</p><p><strong>Results: </strong>The DNN model outperformed all other models in diagnosing PD from handwritten spiral and wave images. On spiral images, the DNN model achieved accuracies of 41.24% over naïve Bayes, 31.24% over decision tree, and 27.9% over support vector machine. On wave images, the DNN model achieved accuracies of 40% over naïve Bayes, 36.67% over decision tree, and 30% over support vector machine. The DNN model demonstrated significant improvements in sensitivity and specificity compared to other models.</p><p><strong>Conclusions: </strong>The DNN model significantly improves the accuracy of PD diagnosis using handwritten spiral and wave images, outperforming several ML and DL models. This approach offers a promising diagnostic tool for early PD detection and provides a foundation for future work to incorporate additional features and enhance detection accuracy.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":"206-230"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Diagnostic Model for Parkinson's Disease Using Handwritten Spiral and Wave Images.\",\"authors\":\"K Aditya Shastry\",\"doi\":\"10.1007/s11596-025-00017-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.</p><p><strong>Methods: </strong>The study utilized a dataset of 204 images (102 spiral and 102 wave) from PD patients and healthy subjects. The images were preprocessed using the Histogram of Oriented Gradients (HOG) descriptor and augmented to increase dataset diversity. The DNN model was designed with an input layer, three convolutional layers, two max-pooling layers, two dropout layers, and two dense layers. The model was trained and evaluated using metrics such as accuracy, sensitivity, specificity, and loss. The DNN model was compared with nine ML models (random forest, logistic regression, AdaBoost, k-nearest neighbor, gradient boost, naïve Bayes, support vector machine, decision tree) and two DL models (convolutional neural network, DenseNet-201).</p><p><strong>Results: </strong>The DNN model outperformed all other models in diagnosing PD from handwritten spiral and wave images. On spiral images, the DNN model achieved accuracies of 41.24% over naïve Bayes, 31.24% over decision tree, and 27.9% over support vector machine. On wave images, the DNN model achieved accuracies of 40% over naïve Bayes, 36.67% over decision tree, and 30% over support vector machine. The DNN model demonstrated significant improvements in sensitivity and specificity compared to other models.</p><p><strong>Conclusions: </strong>The DNN model significantly improves the accuracy of PD diagnosis using handwritten spiral and wave images, outperforming several ML and DL models. This approach offers a promising diagnostic tool for early PD detection and provides a foundation for future work to incorporate additional features and enhance detection accuracy.</p>\",\"PeriodicalId\":10820,\"journal\":{\"name\":\"Current Medical Science\",\"volume\":\" \",\"pages\":\"206-230\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-025-00017-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00017-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Deep Learning-Based Diagnostic Model for Parkinson's Disease Using Handwritten Spiral and Wave Images.
Objective: To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.
Methods: The study utilized a dataset of 204 images (102 spiral and 102 wave) from PD patients and healthy subjects. The images were preprocessed using the Histogram of Oriented Gradients (HOG) descriptor and augmented to increase dataset diversity. The DNN model was designed with an input layer, three convolutional layers, two max-pooling layers, two dropout layers, and two dense layers. The model was trained and evaluated using metrics such as accuracy, sensitivity, specificity, and loss. The DNN model was compared with nine ML models (random forest, logistic regression, AdaBoost, k-nearest neighbor, gradient boost, naïve Bayes, support vector machine, decision tree) and two DL models (convolutional neural network, DenseNet-201).
Results: The DNN model outperformed all other models in diagnosing PD from handwritten spiral and wave images. On spiral images, the DNN model achieved accuracies of 41.24% over naïve Bayes, 31.24% over decision tree, and 27.9% over support vector machine. On wave images, the DNN model achieved accuracies of 40% over naïve Bayes, 36.67% over decision tree, and 30% over support vector machine. The DNN model demonstrated significant improvements in sensitivity and specificity compared to other models.
Conclusions: The DNN model significantly improves the accuracy of PD diagnosis using handwritten spiral and wave images, outperforming several ML and DL models. This approach offers a promising diagnostic tool for early PD detection and provides a foundation for future work to incorporate additional features and enhance detection accuracy.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.