Konrad Wojtaszek, Andrea Cristofolini, Arturo Popoli, Karolina Kołczyk Siedlecka, Robert P Socha, Maria Owińska, Marek Wojnicki
{"title":"磁场对使用 D2EHPA 溶剂萃取 Ho(III) 动力学的影响:综合研究。","authors":"Konrad Wojtaszek, Andrea Cristofolini, Arturo Popoli, Karolina Kołczyk Siedlecka, Robert P Socha, Maria Owińska, Marek Wojnicki","doi":"10.1002/smtd.202402002","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of Ho(III) extraction using di(2-ethylhexyl)phosphoric acid (D2EHPA) under the influence magnetic field are examined. The methodology for kinetics research is based on spectrophotometric techniques. Initial experiments without a magnetic field assess the influence of Ho(III) concentration (0.00625-0.1 m), pH (1-6), D2EHPA concentration (0.1-2 m), and temperatures (5-35 °C). Subsequent tests (5-35 °C) determine the influence of the magnetic field. Experimental considerations are supplemented with numerical simulations of the magnetic field affecting the extraction system. A white precipitate formed at the phase boundary is characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) techniques. Post-extraction solutions are analyzed with nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and magnetic properties of the D2EHPA-Ho(III) complex. The conducted research indicate that magnetic fields notably enhance kinetics of extraction above 25 °C, suggesting a possible change in the extraction mechanism.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402002"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Magnetic Field on the Kinetics of Ho(III) Solvent Extraction Using D2EHPA: A Comprehensive Study.\",\"authors\":\"Konrad Wojtaszek, Andrea Cristofolini, Arturo Popoli, Karolina Kołczyk Siedlecka, Robert P Socha, Maria Owińska, Marek Wojnicki\",\"doi\":\"10.1002/smtd.202402002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of Ho(III) extraction using di(2-ethylhexyl)phosphoric acid (D2EHPA) under the influence magnetic field are examined. The methodology for kinetics research is based on spectrophotometric techniques. Initial experiments without a magnetic field assess the influence of Ho(III) concentration (0.00625-0.1 m), pH (1-6), D2EHPA concentration (0.1-2 m), and temperatures (5-35 °C). Subsequent tests (5-35 °C) determine the influence of the magnetic field. Experimental considerations are supplemented with numerical simulations of the magnetic field affecting the extraction system. A white precipitate formed at the phase boundary is characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) techniques. Post-extraction solutions are analyzed with nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and magnetic properties of the D2EHPA-Ho(III) complex. The conducted research indicate that magnetic fields notably enhance kinetics of extraction above 25 °C, suggesting a possible change in the extraction mechanism.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2402002\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202402002\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402002","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
研究了在磁场影响下使用二(2-乙基己基)磷酸(D2EHPA)萃取 Ho(III)的动力学。动力学研究方法以分光光度法为基础。最初的无磁场实验评估了 Ho(III)浓度(0.00625-0.1 m)、pH 值(1-6)、D2EHPA 浓度(0.1-2 m)和温度(5-35 °C)的影响。随后的测试(5-35 °C)确定了磁场的影响。磁场对萃取系统影响的数值模拟对实验结果进行了补充。使用 X 射线荧光 (XRF)、X 射线衍射 (XRD)、傅立叶变换红外光谱 (FT-IR) 和 X 射线光电子能谱 (XPS) 技术对相界处形成的白色沉淀进行了表征。萃取后的溶液通过核磁共振(NMR)光谱进行分析,以研究 D2EHPA-Ho(III) 复合物的结构和磁性。研究结果表明,磁场能显著提高 25 °C 以上的萃取动力学,这表明萃取机制可能发生了变化。
Influence of Magnetic Field on the Kinetics of Ho(III) Solvent Extraction Using D2EHPA: A Comprehensive Study.
The kinetics of Ho(III) extraction using di(2-ethylhexyl)phosphoric acid (D2EHPA) under the influence magnetic field are examined. The methodology for kinetics research is based on spectrophotometric techniques. Initial experiments without a magnetic field assess the influence of Ho(III) concentration (0.00625-0.1 m), pH (1-6), D2EHPA concentration (0.1-2 m), and temperatures (5-35 °C). Subsequent tests (5-35 °C) determine the influence of the magnetic field. Experimental considerations are supplemented with numerical simulations of the magnetic field affecting the extraction system. A white precipitate formed at the phase boundary is characterized using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) techniques. Post-extraction solutions are analyzed with nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and magnetic properties of the D2EHPA-Ho(III) complex. The conducted research indicate that magnetic fields notably enhance kinetics of extraction above 25 °C, suggesting a possible change in the extraction mechanism.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.