{"title":"用于辐射冷却驱动的被动热电装置的二氧化碳交联纤维素:一石二鸟。","authors":"Legeng Li, Doudou Xing, Hao Yu, Zhihan Wang, Yingjie Zhou, Feng Yan","doi":"10.1039/d5mh00020c","DOIUrl":null,"url":null,"abstract":"<p><p>Radiative-cooling-driven passive thermoelectric devices (RC-TEDs) offer a potentially sustainable energy solution. However, most RC-TED strategies utilize unsustainable polymers. Herein, a green and sustainable CO<sub>2</sub>-crosslinked cellulose (Pulp-CO<sub>2</sub>) was developed for simultaneous use as a passive radiative cooling membrane and an ionogel thermoelectric scaffold. The incorporation of CO<sub>2</sub> in the form of carbonate group linkages in the cellulose backbone resulted in a superior passive radiative cooling effect of the membrane and improved the thermoelectric efficiency of the ionogel compared to the pure pulp. The integrated RC-TED, comprising the Pulp-CO<sub>2</sub> membranes and ionogels, exhibited an impressive thermal voltage output of 1200 mV with a subambient temperature reduction of 5.0 °C under simulated solar radiation (280 W m<sup>-2</sup>), highlighting its potential in low-grade energy harvesting. Thus, this all-cellulose inspired RC-TED device showcases a promising and sustainable strategy for converting solar energy into electricity cost-effectively.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO<sub>2</sub>-crosslinked cellulose for radiative-cooling-driven passive thermoelectric devices: one stone, two birds.\",\"authors\":\"Legeng Li, Doudou Xing, Hao Yu, Zhihan Wang, Yingjie Zhou, Feng Yan\",\"doi\":\"10.1039/d5mh00020c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiative-cooling-driven passive thermoelectric devices (RC-TEDs) offer a potentially sustainable energy solution. However, most RC-TED strategies utilize unsustainable polymers. Herein, a green and sustainable CO<sub>2</sub>-crosslinked cellulose (Pulp-CO<sub>2</sub>) was developed for simultaneous use as a passive radiative cooling membrane and an ionogel thermoelectric scaffold. The incorporation of CO<sub>2</sub> in the form of carbonate group linkages in the cellulose backbone resulted in a superior passive radiative cooling effect of the membrane and improved the thermoelectric efficiency of the ionogel compared to the pure pulp. The integrated RC-TED, comprising the Pulp-CO<sub>2</sub> membranes and ionogels, exhibited an impressive thermal voltage output of 1200 mV with a subambient temperature reduction of 5.0 °C under simulated solar radiation (280 W m<sup>-2</sup>), highlighting its potential in low-grade energy harvesting. Thus, this all-cellulose inspired RC-TED device showcases a promising and sustainable strategy for converting solar energy into electricity cost-effectively.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00020c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00020c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
辐射冷却驱动的无源热电器件(rc - ted)提供了一种潜在的可持续能源解决方案。然而,大多数RC-TED策略使用不可持续的聚合物。本文开发了一种绿色可持续的二氧化碳交联纤维素(纸浆- co2),可同时用作被动辐射冷却膜和离子凝胶热电支架。与纯纸浆相比,二氧化碳以碳酸盐基团键的形式在纤维素主链中掺入,使膜具有优越的被动辐射冷却效果,并提高了离子凝胶的热电效率。在模拟太阳辐射(280 W m-2)下,由纸浆- co2膜和离子凝胶组成的集成RC-TED显示出令人印象深刻的1200 mV热电压输出,亚环境温度降低5.0°C,突出了其在低品位能量收集方面的潜力。因此,这种全纤维素启发的RC-TED设备展示了一种有前途的可持续战略,可以经济有效地将太阳能转化为电能。
CO2-crosslinked cellulose for radiative-cooling-driven passive thermoelectric devices: one stone, two birds.
Radiative-cooling-driven passive thermoelectric devices (RC-TEDs) offer a potentially sustainable energy solution. However, most RC-TED strategies utilize unsustainable polymers. Herein, a green and sustainable CO2-crosslinked cellulose (Pulp-CO2) was developed for simultaneous use as a passive radiative cooling membrane and an ionogel thermoelectric scaffold. The incorporation of CO2 in the form of carbonate group linkages in the cellulose backbone resulted in a superior passive radiative cooling effect of the membrane and improved the thermoelectric efficiency of the ionogel compared to the pure pulp. The integrated RC-TED, comprising the Pulp-CO2 membranes and ionogels, exhibited an impressive thermal voltage output of 1200 mV with a subambient temperature reduction of 5.0 °C under simulated solar radiation (280 W m-2), highlighting its potential in low-grade energy harvesting. Thus, this all-cellulose inspired RC-TED device showcases a promising and sustainable strategy for converting solar energy into electricity cost-effectively.