急性慢性肝衰竭疾病进展的短期预测模型:整合频谱CT细胞外肝体积和临床特征

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yuan Xu, Fukai Li, Bo Liu, Tiezhu Ren, Jiachen Sun, Yufeng Li, Hong Liu, Jianli Liu, Junlin Zhou
{"title":"急性慢性肝衰竭疾病进展的短期预测模型:整合频谱CT细胞外肝体积和临床特征","authors":"Yuan Xu, Fukai Li, Bo Liu, Tiezhu Ren, Jiachen Sun, Yufeng Li, Hong Liu, Jianli Liu, Junlin Zhou","doi":"10.1186/s12880-025-01600-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute-on-chronic liver failure (ACLF) is a life-threatening hepatic syndrome. Therefore, this study aimed to develop a comprehensive model combining extracellular liver volume derived from spectral CT (ECV<sub>IC-liver</sub>) and sarcopenia, for the early prediction of short-term (90-day) disease progression in ACLF.</p><p><strong>Materials and methods: </strong>A retrospective cohort of 126 ACLF patients who underwent hepatic spectral CT scans was included. According to the Asia-Pacific Association for the Study of the Liver (APASL) criteria, patients were divided into the progression group (n = 70) and the stable group (n = 56). ECV<sub>IC-liver</sub> was measured on the equilibrium period (EP) images of spectral CT, and L3-SMI was measured on unenhanced CT images, with sarcopenia assessed. A comprehensive model was developed by combining independent predictors. Model performance was evaluated using receiver operating characteristic (ROC) curve analysis, calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>In the univariate analysis, BMI, WBC, PLT, PTA, L3-SMI, IC-EP, Z-EP, K<sub>140</sub>-EP, NIC-EP, ECV<sub>IC-liver</sub>, and Sarcopenia demonstrated associations with disease progression status at 90 days in ACLF patients. In multivariate logistic regression, white blood cell count (WBC) (OR = 1.19, 95% CI: 1.02-1.40; P = 0.026), ECV<sub>IC-liver</sub> (OR = 1.27, 95% CI: 1.15-1.40; P < 0.001), sarcopenia (OR = 4.15, 95% CI: 1.43-12.01; P = 0.009), MELD-Na score (OR = 1.06, 95%CI: 1.01-1.13;P = 0.042), and CLIF-SOFA score (OR = 1.37, 95%CI:1.15-1.64; P<0.001) emerged as independent risk factors for ACLF progression. The combined model exhibited superior predictive performance (AUCs = 0.910, sensitivity = 80.4%, specificity = 90.0%, PPV = 0.865, NPV = 0.851) compared to CLIF-SOFA, MELD-Na, MELD and CTP scores(both P < 0.001). Calibration curves and DCA confirmed the high clinical utility of the combined model.</p><p><strong>Conclusions: </strong>Patients without sarcopenia and/or with a lower ECV<sub>IC-liver</sub> have a better prognosis, and the integration of WBC, ECV<sub>IC-liver</sub>, Sarcopenia, CLIF-SOFA and MELD-Na scores in a composite model offers a concise and effective tool for predicting disease progression in ACLF patients.</p><p><strong>Trial registration: </strong>Not Applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"69"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877947/pdf/","citationCount":"0","resultStr":"{\"title\":\"A short-term predictive model for disease progression in acute-on-chronic liver failure: integrating spectral CT extracellular liver volume and clinical characteristics.\",\"authors\":\"Yuan Xu, Fukai Li, Bo Liu, Tiezhu Ren, Jiachen Sun, Yufeng Li, Hong Liu, Jianli Liu, Junlin Zhou\",\"doi\":\"10.1186/s12880-025-01600-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute-on-chronic liver failure (ACLF) is a life-threatening hepatic syndrome. Therefore, this study aimed to develop a comprehensive model combining extracellular liver volume derived from spectral CT (ECV<sub>IC-liver</sub>) and sarcopenia, for the early prediction of short-term (90-day) disease progression in ACLF.</p><p><strong>Materials and methods: </strong>A retrospective cohort of 126 ACLF patients who underwent hepatic spectral CT scans was included. According to the Asia-Pacific Association for the Study of the Liver (APASL) criteria, patients were divided into the progression group (n = 70) and the stable group (n = 56). ECV<sub>IC-liver</sub> was measured on the equilibrium period (EP) images of spectral CT, and L3-SMI was measured on unenhanced CT images, with sarcopenia assessed. A comprehensive model was developed by combining independent predictors. Model performance was evaluated using receiver operating characteristic (ROC) curve analysis, calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>In the univariate analysis, BMI, WBC, PLT, PTA, L3-SMI, IC-EP, Z-EP, K<sub>140</sub>-EP, NIC-EP, ECV<sub>IC-liver</sub>, and Sarcopenia demonstrated associations with disease progression status at 90 days in ACLF patients. In multivariate logistic regression, white blood cell count (WBC) (OR = 1.19, 95% CI: 1.02-1.40; P = 0.026), ECV<sub>IC-liver</sub> (OR = 1.27, 95% CI: 1.15-1.40; P < 0.001), sarcopenia (OR = 4.15, 95% CI: 1.43-12.01; P = 0.009), MELD-Na score (OR = 1.06, 95%CI: 1.01-1.13;P = 0.042), and CLIF-SOFA score (OR = 1.37, 95%CI:1.15-1.64; P<0.001) emerged as independent risk factors for ACLF progression. The combined model exhibited superior predictive performance (AUCs = 0.910, sensitivity = 80.4%, specificity = 90.0%, PPV = 0.865, NPV = 0.851) compared to CLIF-SOFA, MELD-Na, MELD and CTP scores(both P < 0.001). Calibration curves and DCA confirmed the high clinical utility of the combined model.</p><p><strong>Conclusions: </strong>Patients without sarcopenia and/or with a lower ECV<sub>IC-liver</sub> have a better prognosis, and the integration of WBC, ECV<sub>IC-liver</sub>, Sarcopenia, CLIF-SOFA and MELD-Na scores in a composite model offers a concise and effective tool for predicting disease progression in ACLF patients.</p><p><strong>Trial registration: </strong>Not Applicable.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"69\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01600-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01600-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:急性伴慢性肝衰竭(ACLF)是一种危及生命的肝脏综合征。因此,本研究旨在建立一个综合的模型,结合频谱CT (ECVIC-liver)和肌肉减少症得出的细胞外肝体积,用于早期预测ACLF的短期(90天)疾病进展。材料和方法:对126例接受肝脏CT扫描的ACLF患者进行回顾性研究。根据亚太肝脏研究协会(APASL)标准,将患者分为进展组(n = 70)和稳定组(n = 56)。在光谱CT的平衡期(EP)图像上测量ecvic -肝脏,在未增强的CT图像上测量L3-SMI,评估肌肉减少症。结合独立预测因子,建立了一个综合模型。采用受试者工作特征(ROC)曲线分析、校准曲线和决策曲线分析(DCA)对模型性能进行评价。结果:在单因素分析中,BMI、WBC、PLT、PTA、L3-SMI、IC-EP、Z-EP、K140-EP、NIC-EP、ECVIC-liver和肌少症与ACLF患者90天的疾病进展状态相关。在多因素logistic回归中,白细胞计数(WBC) (OR = 1.19, 95% CI: 1.02-1.40;P = 0.026), ECVIC-liver (OR = 1.27, 95% CI: 1.15—-1.40;结论:无肌少症和/或ECVIC-liver较低的患者预后较好,综合WBC、ECVIC-liver、sarcopenia、cliff - sofa和MELD-Na评分的复合模型为预测ACLF患者疾病进展提供了一种简洁有效的工具。试验注册:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short-term predictive model for disease progression in acute-on-chronic liver failure: integrating spectral CT extracellular liver volume and clinical characteristics.

Background: Acute-on-chronic liver failure (ACLF) is a life-threatening hepatic syndrome. Therefore, this study aimed to develop a comprehensive model combining extracellular liver volume derived from spectral CT (ECVIC-liver) and sarcopenia, for the early prediction of short-term (90-day) disease progression in ACLF.

Materials and methods: A retrospective cohort of 126 ACLF patients who underwent hepatic spectral CT scans was included. According to the Asia-Pacific Association for the Study of the Liver (APASL) criteria, patients were divided into the progression group (n = 70) and the stable group (n = 56). ECVIC-liver was measured on the equilibrium period (EP) images of spectral CT, and L3-SMI was measured on unenhanced CT images, with sarcopenia assessed. A comprehensive model was developed by combining independent predictors. Model performance was evaluated using receiver operating characteristic (ROC) curve analysis, calibration curves, and decision curve analysis (DCA).

Results: In the univariate analysis, BMI, WBC, PLT, PTA, L3-SMI, IC-EP, Z-EP, K140-EP, NIC-EP, ECVIC-liver, and Sarcopenia demonstrated associations with disease progression status at 90 days in ACLF patients. In multivariate logistic regression, white blood cell count (WBC) (OR = 1.19, 95% CI: 1.02-1.40; P = 0.026), ECVIC-liver (OR = 1.27, 95% CI: 1.15-1.40; P < 0.001), sarcopenia (OR = 4.15, 95% CI: 1.43-12.01; P = 0.009), MELD-Na score (OR = 1.06, 95%CI: 1.01-1.13;P = 0.042), and CLIF-SOFA score (OR = 1.37, 95%CI:1.15-1.64; P<0.001) emerged as independent risk factors for ACLF progression. The combined model exhibited superior predictive performance (AUCs = 0.910, sensitivity = 80.4%, specificity = 90.0%, PPV = 0.865, NPV = 0.851) compared to CLIF-SOFA, MELD-Na, MELD and CTP scores(both P < 0.001). Calibration curves and DCA confirmed the high clinical utility of the combined model.

Conclusions: Patients without sarcopenia and/or with a lower ECVIC-liver have a better prognosis, and the integration of WBC, ECVIC-liver, Sarcopenia, CLIF-SOFA and MELD-Na scores in a composite model offers a concise and effective tool for predicting disease progression in ACLF patients.

Trial registration: Not Applicable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信