氧化铁纳米颗粒在肿瘤放疗中的增强作用。

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-03-17 Epub Date: 2025-03-04 DOI:10.1021/acsabm.4c01978
Maria V Shestovskaya, Anna L Luss, Olga A Bezborodova, Yulia B Venidiktova, Maria S Vorontsova, Elizaveta R Vlaskina, Kirill K Kushnerev, Pavel P Kulikov, Valentin V Makarov, Vladimir S Yudin, Anton A Keskinov
{"title":"氧化铁纳米颗粒在肿瘤放疗中的增强作用。","authors":"Maria V Shestovskaya, Anna L Luss, Olga A Bezborodova, Yulia B Venidiktova, Maria S Vorontsova, Elizaveta R Vlaskina, Kirill K Kushnerev, Pavel P Kulikov, Valentin V Makarov, Vladimir S Yudin, Anton A Keskinov","doi":"10.1021/acsabm.4c01978","DOIUrl":null,"url":null,"abstract":"<p><p>This research aimed to evaluate the potency of preparation based on heparinized iron oxide nanoparticles (hIONPs) in combination with radiation therapy, including magnetic delivery via the applied magnetic field (AMF), in sarcoma and cervical cancer models. For in vitro studies, cells of rhabdomyosarcoma (RD), fibrosarcoma (HT1080), and cervical cancer (HeLa S3) were treated with hIONPs and analyzed for survival rate and hIONP uptake. Then, cell morphology, cell cycle, increase of reactive oxygen species, mitochondria depolarization, and ability to form colonies were assessed for combined treatment (hIONPs + 3Gy). For in vivo research, hIONPs were administered once in the hybrids of CBAxC57Bl/6j mice, grafted with sarcoma (S37) and cervical cancer (CC5) strains. The ultimate in vivo treatment modes were: (1) i.v. hIONPs (14 μg/kg) + 5 Gy; (2) i.v. hIONPs (14 μg/kg) + AMF + 5 Gy; and (3) i.t. hIONPs (2,8 μg/kg) + 5 Gy. The overall survival rates, increase in life expectancy, inhibition of tumor growth (tumor growth inhibition), and degree of inhibition (T/C) were determined, and pathomorphological changes were assessed in experimental groups. The combined treatment in vitro (hIONPs + 3Gy) promotes multiple tumor cell death with high-severity peroxide effects compared with other groups. The sarcoma cells were more sensitive than cervical cancer cells. For in vivo, an enhancing effect was revealed by the combination of radiotherapy and magnetic-delivered hIONPs. For S37 tumor, the treatment regimen was characterized as having a high antitumor effect, ≪++++ ≫, with a 20% cure rate of mice. For the CC5 tumor, the effect was accompanied by the inhibition of tumor growth, an increase in the life expectancy of animals, and was characterized as a significant antitumor effect, ≪+++/++ ≫. From the data obtained, it can be concluded that the radiosensitizing potential of hIONPs may be taken as a basis of combined radiation treatment protocols.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2535-2547"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Oxide Nanoparticles as Enhancers for Radiotherapy of Tumors.\",\"authors\":\"Maria V Shestovskaya, Anna L Luss, Olga A Bezborodova, Yulia B Venidiktova, Maria S Vorontsova, Elizaveta R Vlaskina, Kirill K Kushnerev, Pavel P Kulikov, Valentin V Makarov, Vladimir S Yudin, Anton A Keskinov\",\"doi\":\"10.1021/acsabm.4c01978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research aimed to evaluate the potency of preparation based on heparinized iron oxide nanoparticles (hIONPs) in combination with radiation therapy, including magnetic delivery via the applied magnetic field (AMF), in sarcoma and cervical cancer models. For in vitro studies, cells of rhabdomyosarcoma (RD), fibrosarcoma (HT1080), and cervical cancer (HeLa S3) were treated with hIONPs and analyzed for survival rate and hIONP uptake. Then, cell morphology, cell cycle, increase of reactive oxygen species, mitochondria depolarization, and ability to form colonies were assessed for combined treatment (hIONPs + 3Gy). For in vivo research, hIONPs were administered once in the hybrids of CBAxC57Bl/6j mice, grafted with sarcoma (S37) and cervical cancer (CC5) strains. The ultimate in vivo treatment modes were: (1) i.v. hIONPs (14 μg/kg) + 5 Gy; (2) i.v. hIONPs (14 μg/kg) + AMF + 5 Gy; and (3) i.t. hIONPs (2,8 μg/kg) + 5 Gy. The overall survival rates, increase in life expectancy, inhibition of tumor growth (tumor growth inhibition), and degree of inhibition (T/C) were determined, and pathomorphological changes were assessed in experimental groups. The combined treatment in vitro (hIONPs + 3Gy) promotes multiple tumor cell death with high-severity peroxide effects compared with other groups. The sarcoma cells were more sensitive than cervical cancer cells. For in vivo, an enhancing effect was revealed by the combination of radiotherapy and magnetic-delivered hIONPs. For S37 tumor, the treatment regimen was characterized as having a high antitumor effect, ≪++++ ≫, with a 20% cure rate of mice. For the CC5 tumor, the effect was accompanied by the inhibition of tumor growth, an increase in the life expectancy of animals, and was characterized as a significant antitumor effect, ≪+++/++ ≫. From the data obtained, it can be concluded that the radiosensitizing potential of hIONPs may be taken as a basis of combined radiation treatment protocols.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"2535-2547\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估基于肝素化氧化铁纳米颗粒(hIONPs)的制剂与放射治疗(包括通过外加磁场(AMF)的磁传递)联合在肉瘤和宫颈癌模型中的效力。在体外研究中,用hIONPs治疗横纹肌肉瘤(RD)、纤维肉瘤(HT1080)和宫颈癌(HeLa S3)细胞,并分析其存活率和hIONP摄取情况。然后,对hIONPs + 3Gy联合处理后的细胞形态、细胞周期、活性氧增加、线粒体去极化和形成菌落的能力进行评估。在体内研究中,将hIONPs一次性施用于移植肉瘤(S37)和宫颈癌(CC5)株的CBAxC57Bl/6j小鼠杂交体中。最终体内处理方式为:(1)hIONPs (14 μg/kg) + 5 Gy;(2)静脉注射hIONPs (14 μg/kg) + AMF + 5 Gy;(3) hIONPs (2,8 μg/kg) + 5 Gy。测定各实验组的总生存率、预期寿命增加、肿瘤生长抑制(tumor growth inhibition)及抑制程度(T/C),并评估各实验组的病理形态学变化。与其他组相比,体外联合治疗(hIONPs + 3Gy)促进多个肿瘤细胞死亡,并具有严重的过氧化作用。肉瘤细胞比宫颈癌细胞更敏感。在体内,放射治疗和磁传递hIONPs的结合显示出增强作用。对于S37肿瘤,该治疗方案的特点是具有很高的抗肿瘤效果,≪++++》,小鼠治愈率为20%。对于CC5肿瘤,这种效果伴随着抑制肿瘤生长,延长动物的预期寿命,并具有显著的抗肿瘤作用,≪+++/++》。从获得的数据可以得出结论,hIONPs的放射致敏潜力可以作为联合放射治疗方案的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron Oxide Nanoparticles as Enhancers for Radiotherapy of Tumors.

This research aimed to evaluate the potency of preparation based on heparinized iron oxide nanoparticles (hIONPs) in combination with radiation therapy, including magnetic delivery via the applied magnetic field (AMF), in sarcoma and cervical cancer models. For in vitro studies, cells of rhabdomyosarcoma (RD), fibrosarcoma (HT1080), and cervical cancer (HeLa S3) were treated with hIONPs and analyzed for survival rate and hIONP uptake. Then, cell morphology, cell cycle, increase of reactive oxygen species, mitochondria depolarization, and ability to form colonies were assessed for combined treatment (hIONPs + 3Gy). For in vivo research, hIONPs were administered once in the hybrids of CBAxC57Bl/6j mice, grafted with sarcoma (S37) and cervical cancer (CC5) strains. The ultimate in vivo treatment modes were: (1) i.v. hIONPs (14 μg/kg) + 5 Gy; (2) i.v. hIONPs (14 μg/kg) + AMF + 5 Gy; and (3) i.t. hIONPs (2,8 μg/kg) + 5 Gy. The overall survival rates, increase in life expectancy, inhibition of tumor growth (tumor growth inhibition), and degree of inhibition (T/C) were determined, and pathomorphological changes were assessed in experimental groups. The combined treatment in vitro (hIONPs + 3Gy) promotes multiple tumor cell death with high-severity peroxide effects compared with other groups. The sarcoma cells were more sensitive than cervical cancer cells. For in vivo, an enhancing effect was revealed by the combination of radiotherapy and magnetic-delivered hIONPs. For S37 tumor, the treatment regimen was characterized as having a high antitumor effect, ≪++++ ≫, with a 20% cure rate of mice. For the CC5 tumor, the effect was accompanied by the inhibition of tumor growth, an increase in the life expectancy of animals, and was characterized as a significant antitumor effect, ≪+++/++ ≫. From the data obtained, it can be concluded that the radiosensitizing potential of hIONPs may be taken as a basis of combined radiation treatment protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信