{"title":"无阳极锌金属电池(afzmb):一种新的储能模式","authors":"Sunny Nandi, Martin Pumera","doi":"10.1002/smll.202412161","DOIUrl":null,"url":null,"abstract":"<p>In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202412161","citationCount":"0","resultStr":"{\"title\":\"Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage\",\"authors\":\"Sunny Nandi, Martin Pumera\",\"doi\":\"10.1002/smll.202412161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 14\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202412161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412161\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412161","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage
In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.