无阳极锌金属电池(afzmb):一种新的储能模式

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-04 DOI:10.1002/smll.202412161
Sunny Nandi, Martin Pumera
{"title":"无阳极锌金属电池(afzmb):一种新的储能模式","authors":"Sunny Nandi,&nbsp;Martin Pumera","doi":"10.1002/smll.202412161","DOIUrl":null,"url":null,"abstract":"<p>In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202412161","citationCount":"0","resultStr":"{\"title\":\"Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage\",\"authors\":\"Sunny Nandi,&nbsp;Martin Pumera\",\"doi\":\"10.1002/smll.202412161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 14\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202412161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412161\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412161","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,水锌金属电池(zmb)受到了广泛的关注,由于其高安全性、丰度和环境可持续性,可以被视为锂金属电池的潜在替代品。然而,在zmb在实际应用中得到充分利用之前,仍然存在一些挑战,包括枝晶的形成、腐蚀和不必要的副反应。为了解决这些问题,无阳极锌金属电池(afzmb)作为下一代储能系统应运而生。本文全面分析了afzmb的最新发展,包括其工作机制、相对于传统zmb的优势以及实际实施中的挑战。它还强调了关键策略,包括电流集热器修改,电解质工程和3D打印技术,以提高锌沉积均匀性和循环稳定性。该综述还探讨了3D打印技术如何彻底改变先进集流器和富锌阴极的设计,优化材料利用率并提高电池性能。最后,总结了afzmb的未来前景,强调需要进一步研究以解决现有瓶颈并充分释放其下一代储能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage

Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage

Anode Free Zinc-Metal Batteries (AFZMBs): A New Paradigm in Energy Storage

In the past few years, aqueous zinc-metal batteries (ZMBs) have gained much attention and can be regarded as a potential alternative to lithium-metal batteries owing to their high safety, nature of abundance, and environmental sustainability. However, several challenges persist, including dendrite formation, corrosion, and unwanted side reactions, before ZMBs can be fully utilized in practical applications. To circumvent these issues, anode free zinc-metal batteries (AFZMBs) have emerged as a next-generation energy storage system. This review provides a comprehensive analysis of recent developments in AFZMBs, including their working mechanisms, advantages over conventional ZMBs, and the challenges for practical implementation. It also highlights the key strategies, including current collector modification, electrolyte engineering, and 3D printing techniques to enhance zinc deposition uniformity and cycling stability. The review also explores how 3D printing technology can revolutionize the design of advanced current collectors and zinc-rich cathodes, optimizing material utilization and enhancing battery performance. Finally, with a future perspective of AFZMBs is concluded, highlighting the need for further research to address existing bottlenecks and fully unlock their potential for next-generation energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信