用超高面积容量全固态锂硫电池实现500 Wh Kg−1的比能量

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-04 DOI:10.1002/smll.202409536
Yi Lin, Lucy G. Somervill, Rehan Rashid, Rodolfo I. Ledesma, Jin Ho Kang, Alison R. Kavanagh, Jason S. Packard, Coby H. Scrudder, Abigail L. Durgin, Vesselin I. Yamakov, Ji Su, Donald A. Dornbusch, Rocco P. Viggiano, John W. Connell
{"title":"用超高面积容量全固态锂硫电池实现500 Wh Kg−1的比能量","authors":"Yi Lin,&nbsp;Lucy G. Somervill,&nbsp;Rehan Rashid,&nbsp;Rodolfo I. Ledesma,&nbsp;Jin Ho Kang,&nbsp;Alison R. Kavanagh,&nbsp;Jason S. Packard,&nbsp;Coby H. Scrudder,&nbsp;Abigail L. Durgin,&nbsp;Vesselin I. Yamakov,&nbsp;Ji Su,&nbsp;Donald A. Dornbusch,&nbsp;Rocco P. Viggiano,&nbsp;John W. Connell","doi":"10.1002/smll.202409536","DOIUrl":null,"url":null,"abstract":"<p>All-solid-state lithium–sulfur (Li–S) batteries are considered a top choice to achieve 500 Wh kg<sup>−1</sup> in specific energy while meeting safety requirements for applications such as future electric aviation. A key bottleneck is that S as the active material lacks sufficient conductivities, making it difficult for effective utilization especially in the solid–state. In addition, to achieve high cell-level specific energy, not only a high-utilization S cathode is required, but also the excess weight needs to be balanced and minimized from the solid-state electrolyte (SSE) separator and the Li metal anode. In this report, solid-state S composite cathodes are designed with an argyrodite sulfide SSE and holey graphene as the electrically conducting scaffold. These solid-state cathodes exhibit high S utilization even at ultrahigh mass loadings up to 15 mg cm<sup>−2</sup>, resulting in unprecedented areal capacities over 20 mAh cm<sup>−2</sup>. In combination with the simultaneous reduction of the SSE separator thickness as well as the use of a low-excess Li metal anode, a unit cell specific energy value of 505 Wh kg<sup>−1</sup> is achieved. Significant design space remains to further optimize individual cell components, providing a feasible outlook to advancing specific energy alongside other critical cell metrics, including power and cyclability, toward practical cells and battery packs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 29","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward 500 Wh Kg−1 in Specific Energy with Ultrahigh Areal Capacity All-Solid-State Lithium–Sulfur Batteries\",\"authors\":\"Yi Lin,&nbsp;Lucy G. Somervill,&nbsp;Rehan Rashid,&nbsp;Rodolfo I. Ledesma,&nbsp;Jin Ho Kang,&nbsp;Alison R. Kavanagh,&nbsp;Jason S. Packard,&nbsp;Coby H. Scrudder,&nbsp;Abigail L. Durgin,&nbsp;Vesselin I. Yamakov,&nbsp;Ji Su,&nbsp;Donald A. Dornbusch,&nbsp;Rocco P. Viggiano,&nbsp;John W. Connell\",\"doi\":\"10.1002/smll.202409536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-solid-state lithium–sulfur (Li–S) batteries are considered a top choice to achieve 500 Wh kg<sup>−1</sup> in specific energy while meeting safety requirements for applications such as future electric aviation. A key bottleneck is that S as the active material lacks sufficient conductivities, making it difficult for effective utilization especially in the solid–state. In addition, to achieve high cell-level specific energy, not only a high-utilization S cathode is required, but also the excess weight needs to be balanced and minimized from the solid-state electrolyte (SSE) separator and the Li metal anode. In this report, solid-state S composite cathodes are designed with an argyrodite sulfide SSE and holey graphene as the electrically conducting scaffold. These solid-state cathodes exhibit high S utilization even at ultrahigh mass loadings up to 15 mg cm<sup>−2</sup>, resulting in unprecedented areal capacities over 20 mAh cm<sup>−2</sup>. In combination with the simultaneous reduction of the SSE separator thickness as well as the use of a low-excess Li metal anode, a unit cell specific energy value of 505 Wh kg<sup>−1</sup> is achieved. Significant design space remains to further optimize individual cell components, providing a feasible outlook to advancing specific energy alongside other critical cell metrics, including power and cyclability, toward practical cells and battery packs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 29\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409536\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409536","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态锂硫(Li-S)电池被认为是实现500 Wh kg - 1比能量的最佳选择,同时满足未来电动航空等应用的安全要求。关键的瓶颈是作为活性材料的S缺乏足够的电导率,难以有效利用,特别是在固态中。此外,为了实现高电池级比能量,不仅需要高利用率的S阴极,还需要平衡和最小化固态电解质(SSE)分离器和锂金属阳极的多余重量。在这篇报道中,我们设计了固态S复合阴极,以银晶硫化物SSE和多孔石墨烯作为导电支架。这些固态阴极即使在高达15 mg cm - 2的超高质量负载下也具有很高的S利用率,从而产生前所未有的超过20 mAh cm - 2的面积容量。结合SSE分离器厚度的同时减少以及低过量锂金属阳极的使用,实现了505 Wh kg−1的单位电池比能值。在进一步优化单个电池组件方面,仍有很大的设计空间,为提高特定能量以及其他关键电池指标(包括功率和可循环性)向实用电池和电池组发展提供了可行的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward 500 Wh Kg−1 in Specific Energy with Ultrahigh Areal Capacity All-Solid-State Lithium–Sulfur Batteries

Toward 500 Wh Kg−1 in Specific Energy with Ultrahigh Areal Capacity All-Solid-State Lithium–Sulfur Batteries

Toward 500 Wh Kg−1 in Specific Energy with Ultrahigh Areal Capacity All-Solid-State Lithium–Sulfur Batteries

All-solid-state lithium–sulfur (Li–S) batteries are considered a top choice to achieve 500 Wh kg−1 in specific energy while meeting safety requirements for applications such as future electric aviation. A key bottleneck is that S as the active material lacks sufficient conductivities, making it difficult for effective utilization especially in the solid–state. In addition, to achieve high cell-level specific energy, not only a high-utilization S cathode is required, but also the excess weight needs to be balanced and minimized from the solid-state electrolyte (SSE) separator and the Li metal anode. In this report, solid-state S composite cathodes are designed with an argyrodite sulfide SSE and holey graphene as the electrically conducting scaffold. These solid-state cathodes exhibit high S utilization even at ultrahigh mass loadings up to 15 mg cm−2, resulting in unprecedented areal capacities over 20 mAh cm−2. In combination with the simultaneous reduction of the SSE separator thickness as well as the use of a low-excess Li metal anode, a unit cell specific energy value of 505 Wh kg−1 is achieved. Significant design space remains to further optimize individual cell components, providing a feasible outlook to advancing specific energy alongside other critical cell metrics, including power and cyclability, toward practical cells and battery packs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信