润滑条件下电促进类金刚石/钢界面的摩擦学变化

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Fu Wang, Yihua Wang, Xinjian Dong, Zhibo Wang, Dongshan Li, Guangan Zhang
{"title":"润滑条件下电促进类金刚石/钢界面的摩擦学变化","authors":"Fu Wang, Yihua Wang, Xinjian Dong, Zhibo Wang, Dongshan Li, Guangan Zhang","doi":"10.26599/frict.2025.9441088","DOIUrl":null,"url":null,"abstract":"<p>In modern machinery, the electrified contacts introduce novel lubrication challenges for sliding components. It is vital to understand the electrified tribological characteristics of tribo-materials. This work studied the electrified tribological changes at a DLC/steel sliding interface when lubricated with base oils. The results showed that electric current induced sticking friction, resulting in a friction reduction of approximately 5% to 20% when using mineral, PAO6, and castor oils in short-duration tests, conversely, a slight increase in friction with rapeseed oil. The electric current triggered the growth of a graphite-like tribo-layer on the DLC surface, particularly in ester-lubricated interfaces, which mitigated the wear of DLC. As sliding progressed, DLC film experienced peeling wear under electrified conditions, especially at high currents and loads. The tribo-layer, formed from tribo-oxidation of steel pair and lubricant degradation, was correlated with electrified tribological behavior. The enhanced adhesive and molecular interactions caused by the electric field across the contact were deemed to contribute to the sticking friction under electrified conditions. These findings validate the electrically caused tribological changes in lubricated DLC/steel contacts and indicate the necessity of a novel DLC film design to counteract electrified-induced damage.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"2 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically promoted tribological changes at diamond-like carbon/steel interface under lubrication conditions\",\"authors\":\"Fu Wang, Yihua Wang, Xinjian Dong, Zhibo Wang, Dongshan Li, Guangan Zhang\",\"doi\":\"10.26599/frict.2025.9441088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern machinery, the electrified contacts introduce novel lubrication challenges for sliding components. It is vital to understand the electrified tribological characteristics of tribo-materials. This work studied the electrified tribological changes at a DLC/steel sliding interface when lubricated with base oils. The results showed that electric current induced sticking friction, resulting in a friction reduction of approximately 5% to 20% when using mineral, PAO6, and castor oils in short-duration tests, conversely, a slight increase in friction with rapeseed oil. The electric current triggered the growth of a graphite-like tribo-layer on the DLC surface, particularly in ester-lubricated interfaces, which mitigated the wear of DLC. As sliding progressed, DLC film experienced peeling wear under electrified conditions, especially at high currents and loads. The tribo-layer, formed from tribo-oxidation of steel pair and lubricant degradation, was correlated with electrified tribological behavior. The enhanced adhesive and molecular interactions caused by the electric field across the contact were deemed to contribute to the sticking friction under electrified conditions. These findings validate the electrically caused tribological changes in lubricated DLC/steel contacts and indicate the necessity of a novel DLC film design to counteract electrified-induced damage.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441088\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441088","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在现代机械中,电气化触点对滑动部件的润滑提出了新的挑战。了解摩擦材料的带电摩擦特性是至关重要的。这项工作研究了DLC/钢滑动界面在基础油润滑时的带电摩擦学变化。结果表明,在短期测试中,电流诱导粘着摩擦,导致使用矿物油、PAO6和蓖麻油时摩擦减少约5%至20%,相反,使用菜籽油时摩擦略有增加。电流触发了DLC表面石墨状摩擦层的生长,特别是在酯润滑界面,这减轻了DLC的磨损。随着滑动的进行,DLC薄膜在带电条件下,特别是在大电流和负载下,会发生剥落磨损。摩擦层是由钢对的摩擦氧化和润滑剂的降解形成的,与摩擦磨损行为有关。在带电条件下,电场通过接触面引起的增强的粘附和分子相互作用被认为是导致粘着摩擦的原因。这些研究结果验证了润滑DLC/钢触点的电致摩擦学变化,并表明了一种新型DLC膜设计的必要性,以抵消电致损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrically promoted tribological changes at diamond-like carbon/steel interface under lubrication conditions

Electrically promoted tribological changes at diamond-like carbon/steel interface under lubrication conditions

In modern machinery, the electrified contacts introduce novel lubrication challenges for sliding components. It is vital to understand the electrified tribological characteristics of tribo-materials. This work studied the electrified tribological changes at a DLC/steel sliding interface when lubricated with base oils. The results showed that electric current induced sticking friction, resulting in a friction reduction of approximately 5% to 20% when using mineral, PAO6, and castor oils in short-duration tests, conversely, a slight increase in friction with rapeseed oil. The electric current triggered the growth of a graphite-like tribo-layer on the DLC surface, particularly in ester-lubricated interfaces, which mitigated the wear of DLC. As sliding progressed, DLC film experienced peeling wear under electrified conditions, especially at high currents and loads. The tribo-layer, formed from tribo-oxidation of steel pair and lubricant degradation, was correlated with electrified tribological behavior. The enhanced adhesive and molecular interactions caused by the electric field across the contact were deemed to contribute to the sticking friction under electrified conditions. These findings validate the electrically caused tribological changes in lubricated DLC/steel contacts and indicate the necessity of a novel DLC film design to counteract electrified-induced damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信