{"title":"j聚集的1,2-二(2-(苯氧基)苄基)Hydrazine@2β-环糊精左旋超螺旋的层次自组装及其外部刺激响应解绕","authors":"Sayannita Das, Ankana Karmakar, Suraj Mandal, Sahiba Khatun, Susama Chakraborty, Lakshmi Dutta, Tamal Goswami, Kinkar Biswas, Goutam Biswas, Pranab Ghosh, Amitava Mandal","doi":"10.1021/acs.langmuir.5c00445","DOIUrl":null,"url":null,"abstract":"Induction of chirality to nanosized superstructures from hierarchical self-assembly of achiral monomeric units is an important area to understand the natural chiral amplification and evolution of life processes. We report herein that the complexation of salicylaldehyde azine, 1,2-bis(2-(benzyloxy)benzylidene)hydrazine (BSAZ), with β-cyclodextrin (β-CD) in aqueous solution results in the formation of a slipped J-aggregate (θ < 54.7°) that aggregates further into a left-handed superhelix through sterical constraints triggered by the hydrophobic effect. The structure of the monomeric BSAZ@2β-CD was elucidated by ultraviolet–visible (UV–vis), Fourier transform infrared spectroscopy (FT-IR), mass, powder X-ray diffraction (PXRD), and <sup>1</sup>H, <sup>13</sup>C, and <sup>13</sup>C CP/MAS nuclear magnetic resonance (NMR) spectroscopy. The size, shape, and morphology of the self-aggregated hierarchy were evidenced by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The system showed excellent aggregation induced circular dichroism (AICD) with a negative Cotton effect and a high fluorescence quantum yield of 0.33 at 620 nm in a poor solvent, water, because of the formation of a higher order excimer (<i>N</i> ≈ 46). The helical superstructure showed responsiveness under 254 nm UV light irradiation. Light irradiation slowly unwinds the supercoiled structure into a single strand, as was visualized by a SEM image taken after 15 min of continuous light irradiation. The excellent solvatochromic effect and the control over the formed hierarchical morphology show how a supramolecular approach tailored by noncovalent interactions can develop chiral superstructures from completely achiral molecular building blocks that would have a considerable practical value in chiroptics, templates, and chiral sensing.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"90 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Self-Assembly of J-Aggregated 1,2-Bis(2-(benzyloxy)benzylidene) Hydrazine@2β-Cyclodextrin into Left-Handed Superhelix and Its External Stimuli-Responsive Unwinding\",\"authors\":\"Sayannita Das, Ankana Karmakar, Suraj Mandal, Sahiba Khatun, Susama Chakraborty, Lakshmi Dutta, Tamal Goswami, Kinkar Biswas, Goutam Biswas, Pranab Ghosh, Amitava Mandal\",\"doi\":\"10.1021/acs.langmuir.5c00445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction of chirality to nanosized superstructures from hierarchical self-assembly of achiral monomeric units is an important area to understand the natural chiral amplification and evolution of life processes. We report herein that the complexation of salicylaldehyde azine, 1,2-bis(2-(benzyloxy)benzylidene)hydrazine (BSAZ), with β-cyclodextrin (β-CD) in aqueous solution results in the formation of a slipped J-aggregate (θ < 54.7°) that aggregates further into a left-handed superhelix through sterical constraints triggered by the hydrophobic effect. The structure of the monomeric BSAZ@2β-CD was elucidated by ultraviolet–visible (UV–vis), Fourier transform infrared spectroscopy (FT-IR), mass, powder X-ray diffraction (PXRD), and <sup>1</sup>H, <sup>13</sup>C, and <sup>13</sup>C CP/MAS nuclear magnetic resonance (NMR) spectroscopy. The size, shape, and morphology of the self-aggregated hierarchy were evidenced by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The system showed excellent aggregation induced circular dichroism (AICD) with a negative Cotton effect and a high fluorescence quantum yield of 0.33 at 620 nm in a poor solvent, water, because of the formation of a higher order excimer (<i>N</i> ≈ 46). The helical superstructure showed responsiveness under 254 nm UV light irradiation. Light irradiation slowly unwinds the supercoiled structure into a single strand, as was visualized by a SEM image taken after 15 min of continuous light irradiation. The excellent solvatochromic effect and the control over the formed hierarchical morphology show how a supramolecular approach tailored by noncovalent interactions can develop chiral superstructures from completely achiral molecular building blocks that would have a considerable practical value in chiroptics, templates, and chiral sensing.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00445\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00445","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchical Self-Assembly of J-Aggregated 1,2-Bis(2-(benzyloxy)benzylidene) Hydrazine@2β-Cyclodextrin into Left-Handed Superhelix and Its External Stimuli-Responsive Unwinding
Induction of chirality to nanosized superstructures from hierarchical self-assembly of achiral monomeric units is an important area to understand the natural chiral amplification and evolution of life processes. We report herein that the complexation of salicylaldehyde azine, 1,2-bis(2-(benzyloxy)benzylidene)hydrazine (BSAZ), with β-cyclodextrin (β-CD) in aqueous solution results in the formation of a slipped J-aggregate (θ < 54.7°) that aggregates further into a left-handed superhelix through sterical constraints triggered by the hydrophobic effect. The structure of the monomeric BSAZ@2β-CD was elucidated by ultraviolet–visible (UV–vis), Fourier transform infrared spectroscopy (FT-IR), mass, powder X-ray diffraction (PXRD), and 1H, 13C, and 13C CP/MAS nuclear magnetic resonance (NMR) spectroscopy. The size, shape, and morphology of the self-aggregated hierarchy were evidenced by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The system showed excellent aggregation induced circular dichroism (AICD) with a negative Cotton effect and a high fluorescence quantum yield of 0.33 at 620 nm in a poor solvent, water, because of the formation of a higher order excimer (N ≈ 46). The helical superstructure showed responsiveness under 254 nm UV light irradiation. Light irradiation slowly unwinds the supercoiled structure into a single strand, as was visualized by a SEM image taken after 15 min of continuous light irradiation. The excellent solvatochromic effect and the control over the formed hierarchical morphology show how a supramolecular approach tailored by noncovalent interactions can develop chiral superstructures from completely achiral molecular building blocks that would have a considerable practical value in chiroptics, templates, and chiral sensing.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).