{"title":"用新的内源性代谢物“分流”肥胖","authors":"Victor J. Pai, Alan Saghatelian","doi":"10.1016/j.cmet.2025.02.005","DOIUrl":null,"url":null,"abstract":"Obesity is a growing public health issue that has recently been transformed through the advent of new medicines. However, our understanding of the pathways and mechanisms that regulate energy balance in mammals is still developing. Recent discoveries on this front include an exciting new finding that there exists a novel class of metabolites in humans and mice that can regulate obesity in rodents.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"190 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Shunt-ing” down obesity with novel endogenous metabolites\",\"authors\":\"Victor J. Pai, Alan Saghatelian\",\"doi\":\"10.1016/j.cmet.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity is a growing public health issue that has recently been transformed through the advent of new medicines. However, our understanding of the pathways and mechanisms that regulate energy balance in mammals is still developing. Recent discoveries on this front include an exciting new finding that there exists a novel class of metabolites in humans and mice that can regulate obesity in rodents.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2025.02.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.02.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
“Shunt-ing” down obesity with novel endogenous metabolites
Obesity is a growing public health issue that has recently been transformed through the advent of new medicines. However, our understanding of the pathways and mechanisms that regulate energy balance in mammals is still developing. Recent discoveries on this front include an exciting new finding that there exists a novel class of metabolites in humans and mice that can regulate obesity in rodents.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.