利用导电聚合物纳米纤维制成的无金属纳米酶水凝胶用于多模式抗菌疗法

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wenya Xu, Ziyi Zhu, Zhen Tan, Ziteng Fan, Shibing Wei, Kaili Yang, Lihui Yuwen, Wen Jing Yang, En-Tang Kang, Lianhui Wang
{"title":"利用导电聚合物纳米纤维制成的无金属纳米酶水凝胶用于多模式抗菌疗法","authors":"Wenya Xu, Ziyi Zhu, Zhen Tan, Ziteng Fan, Shibing Wei, Kaili Yang, Lihui Yuwen, Wen Jing Yang, En-Tang Kang, Lianhui Wang","doi":"10.1021/acs.chemmater.4c02480","DOIUrl":null,"url":null,"abstract":"The nanozyme antibacterial materials have been of great interest due to their broad-spectrum activity and minimal drug resistance. A variety of metal-based nanozymes have been designed as bactericidal agents, whereas their biosafety issues are still serious concerns. Accordingly, the development of metal-free nanozymes and the corresponding hydrogel dressings is of great importance for antibacterial applications. Herein, a classical conductive polymer, polyaniline nanofibers (PANI NF), has been developed as a three-pronged metal-free enzyme-like antibacterial material. They exhibited high oxidase-like and peroxidase-like activities for reactive oxygen species (ROS) production, positively charged surfaces capable of capturing/trapping bacteria to reduce ROS diffusion distance, and unique photothermal ablation effect. By harnessing the intrinsic merits of PANI NF, a PANI/poly(vinyl alcohol) (PANI/PVA) nanocomposite hydrogel, with high stability, soft-tissue adhesion properties, self-healing capability, remoldability, and biocompatibility, has been fabricated as biomedical dressings to promote bacteria-infected wound healing. The studies on antibacterial activities of polyaniline nanofibers shed light on the conductive polymer as promising metal-free enzyme-like antibacterial materials. The prepared PANI/PVA hydrogel provides a stable hydrogel dressing without toxic metal leakage for biomedical applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"24 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-Free Nanozyme-Hydrogel Enabled by Conductive Polymer Nanofibers for Multimodal Antibacterial Therapy\",\"authors\":\"Wenya Xu, Ziyi Zhu, Zhen Tan, Ziteng Fan, Shibing Wei, Kaili Yang, Lihui Yuwen, Wen Jing Yang, En-Tang Kang, Lianhui Wang\",\"doi\":\"10.1021/acs.chemmater.4c02480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanozyme antibacterial materials have been of great interest due to their broad-spectrum activity and minimal drug resistance. A variety of metal-based nanozymes have been designed as bactericidal agents, whereas their biosafety issues are still serious concerns. Accordingly, the development of metal-free nanozymes and the corresponding hydrogel dressings is of great importance for antibacterial applications. Herein, a classical conductive polymer, polyaniline nanofibers (PANI NF), has been developed as a three-pronged metal-free enzyme-like antibacterial material. They exhibited high oxidase-like and peroxidase-like activities for reactive oxygen species (ROS) production, positively charged surfaces capable of capturing/trapping bacteria to reduce ROS diffusion distance, and unique photothermal ablation effect. By harnessing the intrinsic merits of PANI NF, a PANI/poly(vinyl alcohol) (PANI/PVA) nanocomposite hydrogel, with high stability, soft-tissue adhesion properties, self-healing capability, remoldability, and biocompatibility, has been fabricated as biomedical dressings to promote bacteria-infected wound healing. The studies on antibacterial activities of polyaniline nanofibers shed light on the conductive polymer as promising metal-free enzyme-like antibacterial materials. The prepared PANI/PVA hydrogel provides a stable hydrogel dressing without toxic metal leakage for biomedical applications.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02480\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02480","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-Free Nanozyme-Hydrogel Enabled by Conductive Polymer Nanofibers for Multimodal Antibacterial Therapy

Metal-Free Nanozyme-Hydrogel Enabled by Conductive Polymer Nanofibers for Multimodal Antibacterial Therapy
The nanozyme antibacterial materials have been of great interest due to their broad-spectrum activity and minimal drug resistance. A variety of metal-based nanozymes have been designed as bactericidal agents, whereas their biosafety issues are still serious concerns. Accordingly, the development of metal-free nanozymes and the corresponding hydrogel dressings is of great importance for antibacterial applications. Herein, a classical conductive polymer, polyaniline nanofibers (PANI NF), has been developed as a three-pronged metal-free enzyme-like antibacterial material. They exhibited high oxidase-like and peroxidase-like activities for reactive oxygen species (ROS) production, positively charged surfaces capable of capturing/trapping bacteria to reduce ROS diffusion distance, and unique photothermal ablation effect. By harnessing the intrinsic merits of PANI NF, a PANI/poly(vinyl alcohol) (PANI/PVA) nanocomposite hydrogel, with high stability, soft-tissue adhesion properties, self-healing capability, remoldability, and biocompatibility, has been fabricated as biomedical dressings to promote bacteria-infected wound healing. The studies on antibacterial activities of polyaniline nanofibers shed light on the conductive polymer as promising metal-free enzyme-like antibacterial materials. The prepared PANI/PVA hydrogel provides a stable hydrogel dressing without toxic metal leakage for biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信