基于Lefschetz顶针分解和Borel恢复的Dyson-Schwinger方程截断

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Feiyu Peng, Hongfei Shu
{"title":"基于Lefschetz顶针分解和Borel恢复的Dyson-Schwinger方程截断","authors":"Feiyu Peng, Hongfei Shu","doi":"10.1103/physrevd.111.065003","DOIUrl":null,"url":null,"abstract":"We study the zero-dimensional prototype of the path integrals in quantum mechanics and quantum field theory, with the action S</a:mi>(</a:mo>ϕ</a:mi>)</a:mo>=</a:mo>σ</a:mi>2</a:mn></a:mfrac>ϕ</a:mi>2</a:mn></a:msup>+</a:mo>λ</a:mi>4</a:mn></a:mfrac>ϕ</a:mi>4</a:mn></a:msup></a:math>. Using the Lefschetz thimble decomposition and the saddle point expansion, we derive multiple asymptotic formal series of the correlation function associated with the perturbative and nonperturbative saddle points. Furthermore, we reconstruct the exact correlation function employing the Borel resummation. We then consider how to truncate the Dyson-Schwinger equations to compute two-point functions beginning with the perturbation expansion of the correlation functions, analogous to the one obtained from the Feynman diagram in higher dimensions. For the case <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>σ</e:mi><e:mo>&lt;</e:mo><e:mn>0</e:mn></e:math>, we find that, although the asymptotic series around the perturbative saddle point is Borel summable, it does not capture the full information. Consequently, contributions from nonperturbative saddle points must be included to ensure a complete truncation procedure. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"38 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truncating Dyson-Schwinger equations based on a Lefschetz thimble decomposition and Borel resummation\",\"authors\":\"Feiyu Peng, Hongfei Shu\",\"doi\":\"10.1103/physrevd.111.065003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the zero-dimensional prototype of the path integrals in quantum mechanics and quantum field theory, with the action S</a:mi>(</a:mo>ϕ</a:mi>)</a:mo>=</a:mo>σ</a:mi>2</a:mn></a:mfrac>ϕ</a:mi>2</a:mn></a:msup>+</a:mo>λ</a:mi>4</a:mn></a:mfrac>ϕ</a:mi>4</a:mn></a:msup></a:math>. Using the Lefschetz thimble decomposition and the saddle point expansion, we derive multiple asymptotic formal series of the correlation function associated with the perturbative and nonperturbative saddle points. Furthermore, we reconstruct the exact correlation function employing the Borel resummation. We then consider how to truncate the Dyson-Schwinger equations to compute two-point functions beginning with the perturbation expansion of the correlation functions, analogous to the one obtained from the Feynman diagram in higher dimensions. For the case <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>σ</e:mi><e:mo>&lt;</e:mo><e:mn>0</e:mn></e:math>, we find that, although the asymptotic series around the perturbative saddle point is Borel summable, it does not capture the full information. Consequently, contributions from nonperturbative saddle points must be included to ensure a complete truncation procedure. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.065003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.065003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了量子力学和量子场论中路径积分的零维原型,其作用为S(φ)=σ2ϕ2+λ4ϕ4。利用Lefschetz顶针分解和鞍点展开,导出了与微扰和非微扰鞍点相关函数的多个渐近形式级数。在此基础上,利用Borel恢复法重构了精确相关函数。然后,我们考虑如何截断Dyson-Schwinger方程来计算两点函数,从相关函数的微扰展开开始,类似于从高维的费曼图中得到的函数。对于σ<;0的情况,我们发现,尽管围绕摄动鞍点的渐近级数是Borel可和的,但它不能捕获全部信息。因此,必须包括来自非摄动鞍点的贡献,以确保完整的截断过程。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Truncating Dyson-Schwinger equations based on a Lefschetz thimble decomposition and Borel resummation
We study the zero-dimensional prototype of the path integrals in quantum mechanics and quantum field theory, with the action S(ϕ)=σ2ϕ2+λ4ϕ4. Using the Lefschetz thimble decomposition and the saddle point expansion, we derive multiple asymptotic formal series of the correlation function associated with the perturbative and nonperturbative saddle points. Furthermore, we reconstruct the exact correlation function employing the Borel resummation. We then consider how to truncate the Dyson-Schwinger equations to compute two-point functions beginning with the perturbation expansion of the correlation functions, analogous to the one obtained from the Feynman diagram in higher dimensions. For the case σ<0, we find that, although the asymptotic series around the perturbative saddle point is Borel summable, it does not capture the full information. Consequently, contributions from nonperturbative saddle points must be included to ensure a complete truncation procedure. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信