脊椎动物分割时钟的研究进展

IF 52 1区 生物学 Q1 GENETICS & HEREDITY
Akihiro Isomura, Ryoichiro Kageyama
{"title":"脊椎动物分割时钟的研究进展","authors":"Akihiro Isomura, Ryoichiro Kageyama","doi":"10.1038/s41576-025-00813-6","DOIUrl":null,"url":null,"abstract":"The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix–loop–helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development. In this Review, Isomura and Kageyama discuss how advances in live imaging, stem cell technologies and synthetic approaches are providing insights into the mechanisms underlying synchronization and species-specific periodicity of the mammalian segmentation clock during somitogenesis.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 7","pages":"479-493"},"PeriodicalIF":52.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in understanding the vertebrate segmentation clock\",\"authors\":\"Akihiro Isomura, Ryoichiro Kageyama\",\"doi\":\"10.1038/s41576-025-00813-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix–loop–helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development. In this Review, Isomura and Kageyama discuss how advances in live imaging, stem cell technologies and synthetic approaches are providing insights into the mechanisms underlying synchronization and species-specific periodicity of the mammalian segmentation clock during somitogenesis.\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"26 7\",\"pages\":\"479-493\"},\"PeriodicalIF\":52.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41576-025-00813-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41576-025-00813-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在脊椎动物胚胎发生过程中,分割时钟是调节体细胞前中胚层周期性形成体的分子振荡器。在体前中胚层细胞中,毛状同源物或与毛状相关的基本螺旋-环-螺旋(bHLH)转录抑制因子的同步振荡表达调节了控制体裂的下游因子的周期性表达,其周期性在不同物种中有所不同。尽管生物钟的许多关键组成部分已经被识别和表征,但人们对生物钟如何在细胞间同步以及物种特异性周期性如何实现知之甚少。活体成像、干细胞和类器官技术以及合成方法的进步已经开始揭示体细胞发育这些方面的详细机制,为了解胚胎发育过程中形态发生如何在空间和时间上协调提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Progress in understanding the vertebrate segmentation clock

Progress in understanding the vertebrate segmentation clock

Progress in understanding the vertebrate segmentation clock
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix–loop–helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development. In this Review, Isomura and Kageyama discuss how advances in live imaging, stem cell technologies and synthetic approaches are providing insights into the mechanisms underlying synchronization and species-specific periodicity of the mammalian segmentation clock during somitogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Genetics
Nature Reviews Genetics 生物-遗传学
CiteScore
57.40
自引率
0.50%
发文量
113
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish. Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience. As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信