{"title":"Protocol for single-cell analysis of DNA double-strand break production and repair in cell-cycle phases by automated high-content microscopy.","authors":"Mathéa Geraud, Lara Fernandez Martinez, Andrea Carla Ajello, Agnese Cristini, Olivier Sordet","doi":"10.1016/j.xpro.2025.103662","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms of DNA double-strand break (DSB) production and repair vary throughout the cell cycle. Here, we provide a protocol to quantify DSB production and repair in G1, S, and G2 phases of asynchronous adherent cells by coupling the staining of DSBs and cell-cycle markers with automated high-content fluorescence microscopy. We describe steps for cell seeding, treatment, staining, imaging, and analysis. This protocol is broadly applicable for monitoring DSB dynamics at single-cell level throughout the cell cycle. For complete details on the use and execution of this protocol, please refer to Geraud et al.<sup>1</sup>.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"6 1","pages":"103662"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2025.103662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Protocol for single-cell analysis of DNA double-strand break production and repair in cell-cycle phases by automated high-content microscopy.
The mechanisms of DNA double-strand break (DSB) production and repair vary throughout the cell cycle. Here, we provide a protocol to quantify DSB production and repair in G1, S, and G2 phases of asynchronous adherent cells by coupling the staining of DSBs and cell-cycle markers with automated high-content fluorescence microscopy. We describe steps for cell seeding, treatment, staining, imaging, and analysis. This protocol is broadly applicable for monitoring DSB dynamics at single-cell level throughout the cell cycle. For complete details on the use and execution of this protocol, please refer to Geraud et al.1.