{"title":"机器学习改善医疗设备管理:聚焦婴儿培养箱。","authors":"Lemana Spahić, Una Sredović, Zijad Kurpejović, Emina Mrdanović, Gurbeta Pokvić, Almir Badnjević","doi":"10.1177/09287329241292168","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Poorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. As infant incubators are used as a form of fundamental healthcare support for the most sensitive population, prematurely born infants, special care mus be taken to ensure their proper functioning. This is done through a standardized process of post-market surveillance.</p><p><strong>Objective: </strong>To address the issue of faulty infant incubators being undetected and used between yearly post-market surveillance, an automated system based on machine learning was developed for prediction of infant incubator performance status.</p><p><strong>Methods: </strong>In total, 1997 samples were collected during the inspection process of infant incubator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. Various machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR) for the development of the automated system.</p><p><strong>Results: </strong>The aforementioned algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The 0.93 AUC of Naïve Bayes indicates that it is overall stronger in predictive capabilities than decision tree and random forest which displayed superior accuracy in comparison to Naïve Bayes.</p><p><strong>Conclusion: </strong>The results of this study demonstrate that machine learning algorithms can be effectively used to predict infant incubator performance status on the basis of measurements taken during post-market surveillance. Adoption of these automated systems based on artificial intelligence will help in overcoming challenges of ensuring quality of infant incubators that are already being used in healthcare institutions.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329241292168"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for improved medical device management: A focus on infant incubators.\",\"authors\":\"Lemana Spahić, Una Sredović, Zijad Kurpejović, Emina Mrdanović, Gurbeta Pokvić, Almir Badnjević\",\"doi\":\"10.1177/09287329241292168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Poorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. As infant incubators are used as a form of fundamental healthcare support for the most sensitive population, prematurely born infants, special care mus be taken to ensure their proper functioning. This is done through a standardized process of post-market surveillance.</p><p><strong>Objective: </strong>To address the issue of faulty infant incubators being undetected and used between yearly post-market surveillance, an automated system based on machine learning was developed for prediction of infant incubator performance status.</p><p><strong>Methods: </strong>In total, 1997 samples were collected during the inspection process of infant incubator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. Various machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR) for the development of the automated system.</p><p><strong>Results: </strong>The aforementioned algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The 0.93 AUC of Naïve Bayes indicates that it is overall stronger in predictive capabilities than decision tree and random forest which displayed superior accuracy in comparison to Naïve Bayes.</p><p><strong>Conclusion: </strong>The results of this study demonstrate that machine learning algorithms can be effectively used to predict infant incubator performance status on the basis of measurements taken during post-market surveillance. Adoption of these automated systems based on artificial intelligence will help in overcoming challenges of ensuring quality of infant incubators that are already being used in healthcare institutions.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"9287329241292168\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09287329241292168\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241292168","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Machine learning for improved medical device management: A focus on infant incubators.
Background: Poorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. As infant incubators are used as a form of fundamental healthcare support for the most sensitive population, prematurely born infants, special care mus be taken to ensure their proper functioning. This is done through a standardized process of post-market surveillance.
Objective: To address the issue of faulty infant incubators being undetected and used between yearly post-market surveillance, an automated system based on machine learning was developed for prediction of infant incubator performance status.
Methods: In total, 1997 samples were collected during the inspection process of infant incubator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. Various machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR) for the development of the automated system.
Results: The aforementioned algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The 0.93 AUC of Naïve Bayes indicates that it is overall stronger in predictive capabilities than decision tree and random forest which displayed superior accuracy in comparison to Naïve Bayes.
Conclusion: The results of this study demonstrate that machine learning algorithms can be effectively used to predict infant incubator performance status on the basis of measurements taken during post-market surveillance. Adoption of these automated systems based on artificial intelligence will help in overcoming challenges of ensuring quality of infant incubators that are already being used in healthcare institutions.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).