Ellis Chika Onwordi, Thomas Whitehurst, Ekaterina Shatalina, Richard Carr, Ayla Mansur, Atheeshaan Arumuham, Martin Osugo, Tiago Reis Marques, Sameer Jauhar, Susham Gupta, Sofia Pappa, Ravi Mehrotra, Maja Ranger, Nikola Rahaman, Eugenii A Rabiner, Roger N Gunn, Sridhar Natesan, Oliver D Howes
{"title":"精神分裂症病程早期皮质突触末端密度标记 SV2A 与谷氨酸之间的关系:一项多模态 PET 和 MRS 成像研究。","authors":"Ellis Chika Onwordi, Thomas Whitehurst, Ekaterina Shatalina, Richard Carr, Ayla Mansur, Atheeshaan Arumuham, Martin Osugo, Tiago Reis Marques, Sameer Jauhar, Susham Gupta, Sofia Pappa, Ravi Mehrotra, Maja Ranger, Nikola Rahaman, Eugenii A Rabiner, Roger N Gunn, Sridhar Natesan, Oliver D Howes","doi":"10.1038/s41398-025-03269-8","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of glutamatergic terminals is hypothesised to contribute to excitation-inhibition imbalance in schizophrenia, supported by evidence that the normal positive association between glutamate concentrations and synaptic terminal density is not found in patients with chronic schizophrenia. However, it is unknown whether the relationship between synaptic terminal density and glutamate levels is altered early in the course of illness. To address this, we investigated [<sup>11</sup>C]UCB-J distribution volume ratio (DVR) and glutamatergic markers in healthy volunteers (HV) and in antipsychotic-naïve/free patients with schizophrenia (SCZ) recruited from first-episode psychosis services. Forty volunteers (HV n = 19, SCZ n = 21) underwent [<sup>11</sup>C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (<sup>1</sup>H-MRS) imaging in the anterior cingulate cortex (ACC) and left hippocampus to index [<sup>11</sup>C]UCB-J DVR and creatine-scaled glutamate (Glu/Cr) and glutamate in combination with glutamine (Glx/Cr). In the HV but not SCZ group, [<sup>11</sup>C]UCB-J DVR was significantly positively associated with Glu/Cr (Spearman's rho = 0.55, p = 0.02) and Glx/Cr (Spearman's rho = 0.73, p = 0.0004) in the ACC, and with Glu/Cr in the left hippocampus (Spearman's rho = 0.77, p = 0.0001). DVR was significantly lower in the ACC in the SCZ group compared to the HV group (Kolmogorov-Smirnov Z = 1.44, p = 0.03). Together, these findings indicate that the normal relationship between levels of a synaptic terminal density marker and levels of glutamate is disrupted early in the course of schizophrenia. This is consistent with the hypothesis that there is loss of glutamatergic terminals at illness onset.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"70"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873237/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between cortical synaptic terminal density marker SV2A and glutamate early in the course of schizophrenia: a multimodal PET and MRS imaging study.\",\"authors\":\"Ellis Chika Onwordi, Thomas Whitehurst, Ekaterina Shatalina, Richard Carr, Ayla Mansur, Atheeshaan Arumuham, Martin Osugo, Tiago Reis Marques, Sameer Jauhar, Susham Gupta, Sofia Pappa, Ravi Mehrotra, Maja Ranger, Nikola Rahaman, Eugenii A Rabiner, Roger N Gunn, Sridhar Natesan, Oliver D Howes\",\"doi\":\"10.1038/s41398-025-03269-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of glutamatergic terminals is hypothesised to contribute to excitation-inhibition imbalance in schizophrenia, supported by evidence that the normal positive association between glutamate concentrations and synaptic terminal density is not found in patients with chronic schizophrenia. However, it is unknown whether the relationship between synaptic terminal density and glutamate levels is altered early in the course of illness. To address this, we investigated [<sup>11</sup>C]UCB-J distribution volume ratio (DVR) and glutamatergic markers in healthy volunteers (HV) and in antipsychotic-naïve/free patients with schizophrenia (SCZ) recruited from first-episode psychosis services. Forty volunteers (HV n = 19, SCZ n = 21) underwent [<sup>11</sup>C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (<sup>1</sup>H-MRS) imaging in the anterior cingulate cortex (ACC) and left hippocampus to index [<sup>11</sup>C]UCB-J DVR and creatine-scaled glutamate (Glu/Cr) and glutamate in combination with glutamine (Glx/Cr). In the HV but not SCZ group, [<sup>11</sup>C]UCB-J DVR was significantly positively associated with Glu/Cr (Spearman's rho = 0.55, p = 0.02) and Glx/Cr (Spearman's rho = 0.73, p = 0.0004) in the ACC, and with Glu/Cr in the left hippocampus (Spearman's rho = 0.77, p = 0.0001). DVR was significantly lower in the ACC in the SCZ group compared to the HV group (Kolmogorov-Smirnov Z = 1.44, p = 0.03). Together, these findings indicate that the normal relationship between levels of a synaptic terminal density marker and levels of glutamate is disrupted early in the course of schizophrenia. This is consistent with the hypothesis that there is loss of glutamatergic terminals at illness onset.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"70\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03269-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03269-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
The relationship between cortical synaptic terminal density marker SV2A and glutamate early in the course of schizophrenia: a multimodal PET and MRS imaging study.
Loss of glutamatergic terminals is hypothesised to contribute to excitation-inhibition imbalance in schizophrenia, supported by evidence that the normal positive association between glutamate concentrations and synaptic terminal density is not found in patients with chronic schizophrenia. However, it is unknown whether the relationship between synaptic terminal density and glutamate levels is altered early in the course of illness. To address this, we investigated [11C]UCB-J distribution volume ratio (DVR) and glutamatergic markers in healthy volunteers (HV) and in antipsychotic-naïve/free patients with schizophrenia (SCZ) recruited from first-episode psychosis services. Forty volunteers (HV n = 19, SCZ n = 21) underwent [11C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (1H-MRS) imaging in the anterior cingulate cortex (ACC) and left hippocampus to index [11C]UCB-J DVR and creatine-scaled glutamate (Glu/Cr) and glutamate in combination with glutamine (Glx/Cr). In the HV but not SCZ group, [11C]UCB-J DVR was significantly positively associated with Glu/Cr (Spearman's rho = 0.55, p = 0.02) and Glx/Cr (Spearman's rho = 0.73, p = 0.0004) in the ACC, and with Glu/Cr in the left hippocampus (Spearman's rho = 0.77, p = 0.0001). DVR was significantly lower in the ACC in the SCZ group compared to the HV group (Kolmogorov-Smirnov Z = 1.44, p = 0.03). Together, these findings indicate that the normal relationship between levels of a synaptic terminal density marker and levels of glutamate is disrupted early in the course of schizophrenia. This is consistent with the hypothesis that there is loss of glutamatergic terminals at illness onset.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.