{"title":"戊苷积累在应激诱发的社会行为缺陷中的作用。","authors":"Mayuko Masada , Kazuya Toriumi , Kazuhiro Suzuki , Mitsuhiro Miyashita , Masanari Itokawa , Makoto Arai","doi":"10.1016/j.neulet.2025.138180","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms underlying schizophrenia, a psychiatric disorder characterized by significant social and behavioral impairments, remain poorly understood. However, glycation stress, driven by the accumulation of advanced glycation end products (AGEs) such as pentosidine, has been implicated in its pathogenesis. Therefore, this study aimed to explore the role of pentosidine in stress-induced social behavioral deficits using a mouse model of social defeat stress (SDS). Mice exposed to SDS displayed individual differences in sociability, and were categorized into stress-susceptible and stress-resilient phenotypes based on their social interaction ratio. Pentosidine levels were significantly elevated in the plasma and the prefrontal cortex (Pfc) of the susceptible group, which correlated with increased social avoidance and decreased interaction times. Administration of pyridoxamine, an AGE synthesis inhibitor, during SDS exposure mitigated these behavioral deficits, and suppressed pentosidine accumulation in both the plasma and Pfc. These findings provide the first evidence linking pentosidine accumulation to stress susceptibility, indicating the involvement of a molecular pathway through which glycation stress influences social behavior. Future studies should further elucidate the mechanisms underlying the effects of pentosidine on behavior, and explore its broader implications in psychiatric disorders.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"852 ","pages":"Article 138180"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of pentosidine accumulation in stress-induced social behavioral deficits\",\"authors\":\"Mayuko Masada , Kazuya Toriumi , Kazuhiro Suzuki , Mitsuhiro Miyashita , Masanari Itokawa , Makoto Arai\",\"doi\":\"10.1016/j.neulet.2025.138180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms underlying schizophrenia, a psychiatric disorder characterized by significant social and behavioral impairments, remain poorly understood. However, glycation stress, driven by the accumulation of advanced glycation end products (AGEs) such as pentosidine, has been implicated in its pathogenesis. Therefore, this study aimed to explore the role of pentosidine in stress-induced social behavioral deficits using a mouse model of social defeat stress (SDS). Mice exposed to SDS displayed individual differences in sociability, and were categorized into stress-susceptible and stress-resilient phenotypes based on their social interaction ratio. Pentosidine levels were significantly elevated in the plasma and the prefrontal cortex (Pfc) of the susceptible group, which correlated with increased social avoidance and decreased interaction times. Administration of pyridoxamine, an AGE synthesis inhibitor, during SDS exposure mitigated these behavioral deficits, and suppressed pentosidine accumulation in both the plasma and Pfc. These findings provide the first evidence linking pentosidine accumulation to stress susceptibility, indicating the involvement of a molecular pathway through which glycation stress influences social behavior. Future studies should further elucidate the mechanisms underlying the effects of pentosidine on behavior, and explore its broader implications in psychiatric disorders.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"852 \",\"pages\":\"Article 138180\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000680\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Role of pentosidine accumulation in stress-induced social behavioral deficits
The mechanisms underlying schizophrenia, a psychiatric disorder characterized by significant social and behavioral impairments, remain poorly understood. However, glycation stress, driven by the accumulation of advanced glycation end products (AGEs) such as pentosidine, has been implicated in its pathogenesis. Therefore, this study aimed to explore the role of pentosidine in stress-induced social behavioral deficits using a mouse model of social defeat stress (SDS). Mice exposed to SDS displayed individual differences in sociability, and were categorized into stress-susceptible and stress-resilient phenotypes based on their social interaction ratio. Pentosidine levels were significantly elevated in the plasma and the prefrontal cortex (Pfc) of the susceptible group, which correlated with increased social avoidance and decreased interaction times. Administration of pyridoxamine, an AGE synthesis inhibitor, during SDS exposure mitigated these behavioral deficits, and suppressed pentosidine accumulation in both the plasma and Pfc. These findings provide the first evidence linking pentosidine accumulation to stress susceptibility, indicating the involvement of a molecular pathway through which glycation stress influences social behavior. Future studies should further elucidate the mechanisms underlying the effects of pentosidine on behavior, and explore its broader implications in psychiatric disorders.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.