{"title":"TLR-4Ab and IFNγAb with exogenous IL-10 treated LPS induced mice shown differential inflammatory response upon RANKL-M-CSF stimulation in resident bone marrow cells","authors":"Gopinath Mukherjee, Sharmistha Samanta, Biswadev Bishayi","doi":"10.1016/j.micpath.2025.107416","DOIUrl":null,"url":null,"abstract":"<div><div>The inflammatory response in bone tissue often triggered by LPS is a complex process. Since LPS through TLR4 and in presence of IFNγ activates osteoclast differentiation and bone resorption, therefore, suppression of osteoclastogenesis through inhibition of TLR4 vs IFNγ mediated inflammation could be a reasonable strategy for the treatment of inflammatory bone loss. Administration of anti-TLR4 (30 mg/kg) and anti-IFNγ antibodies (6.6 mg/kg) were utilized before LPS (5 mg/kg) challenge and subsequently mice were treated with mouse IL-10 (0.02 mg/kg). Then RBMCs were isolated from different groups of mice and stimulated (<em>in vitro</em>) with M-CSF (10 ng/ml) and RANKL (10 ng/ml) to induce bone marrow cell differentiation in presence of LPS (100 ng/ml). The involvement of RANKL and M-CSF in the regulation of bone inflammation underlines the intricate signaling pathways. Furthermore, the study sheds light on the potential therapeutic effects of exogenous IL-10 possibly through STAT3 signaling in the RBMCs. The use of antibodies against TLR4 and IFNγ, in conjugation with IL-10in LPS bone damage model, appears to downregulate the activation of NF-κB, and reduction of many pro-inflammatory cytokines regulating the inflammatory cascade in RBMC. This suggests a promising avenue for the development of treatments aimed at mitigating bone inflammation associated with bacterial infections. Therefore, inhibition of TLR4 and IFNγ could be explored as potential therapeutic agents against LPS induced bone loss.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"202 ","pages":"Article 107416"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088240102500141X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
TLR-4Ab and IFNγAb with exogenous IL-10 treated LPS induced mice shown differential inflammatory response upon RANKL-M-CSF stimulation in resident bone marrow cells
The inflammatory response in bone tissue often triggered by LPS is a complex process. Since LPS through TLR4 and in presence of IFNγ activates osteoclast differentiation and bone resorption, therefore, suppression of osteoclastogenesis through inhibition of TLR4 vs IFNγ mediated inflammation could be a reasonable strategy for the treatment of inflammatory bone loss. Administration of anti-TLR4 (30 mg/kg) and anti-IFNγ antibodies (6.6 mg/kg) were utilized before LPS (5 mg/kg) challenge and subsequently mice were treated with mouse IL-10 (0.02 mg/kg). Then RBMCs were isolated from different groups of mice and stimulated (in vitro) with M-CSF (10 ng/ml) and RANKL (10 ng/ml) to induce bone marrow cell differentiation in presence of LPS (100 ng/ml). The involvement of RANKL and M-CSF in the regulation of bone inflammation underlines the intricate signaling pathways. Furthermore, the study sheds light on the potential therapeutic effects of exogenous IL-10 possibly through STAT3 signaling in the RBMCs. The use of antibodies against TLR4 and IFNγ, in conjugation with IL-10in LPS bone damage model, appears to downregulate the activation of NF-κB, and reduction of many pro-inflammatory cytokines regulating the inflammatory cascade in RBMC. This suggests a promising avenue for the development of treatments aimed at mitigating bone inflammation associated with bacterial infections. Therefore, inhibition of TLR4 and IFNγ could be explored as potential therapeutic agents against LPS induced bone loss.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)