{"title":"Design and evaluation of potent multiepitope broad spectrum DNA and protein vaccine candidates against leptospirosis","authors":"Anita Chauhan , Dhwani Jhala , Ritik Thumar , Kopal Kapoor , Aneri Joshi , Devanshi Gajjar , Sriram Seshadri , Satyamitra Shekh , Chaitanya Joshi , Amrutlal Patel","doi":"10.1016/j.micpath.2025.107418","DOIUrl":null,"url":null,"abstract":"<div><div>Leptospirosis is a widespread zoonotic disease that causes severe health complications with no approved vaccine which provide broad range protection. In this study, we have focused on LruC protein from the outer membrane of <em>Leptospira</em> spp. LruC protein has been considered as promising target for vaccine due to its immunogenicity and conservancy. We have identified total 13 conserved B-cell, CTL, and HTL epitopes from 22 different pathogenic <em>Leptospira</em> species and serovars, which were linked with 4 linkers and 3 adjuvants (HBHA, CTB, TLR4) to design 36 multiepitope vaccine constructs to study the effect of different components on vaccine effectiveness. The antigenicity, immunogenicity, and non-allergenicity of the constructs were confirmed through computational analyses. Physico-chemical properties, secondary structure, and tertiary models of the vaccine constructs were predicted and validated. Molecular docking studies were conducted with Toll-like receptors (TLR2, TLR4) to assess binding affinity, identifying three top vaccine candidates (HBHA-construct 6, CTB-construct 9, and TLR4-construct 12) for further investigation. Further, these candidates were successfully cloned into pVAX1 and pET30a vectors to prepare DNA and protein vaccines, respectively. Moreover, these multiepitope vaccines were tested in mice models to assess its immunogenicity. ELISA performed with antisera against vaccine antigen, as well as crude extract of pathogenic Leptospira species showed significant IgG responses, particularly in protein vaccines. Flow cytometry revealed increased IFN-γ producing CD4<sup>+</sup> and CD8<sup>+</sup> T cells, especially in the TLR4-adjuvanted vaccine groups. The microscopic agglutination test further confirmed the specificity of the antibody response to <em>Leptospira</em> serovars. Overall, this study demonstrates the potential of these multiepitope vaccine constructs in eliciting a robust immune response, laying the foundation for future challenge study and preclinical evaluation.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"202 ","pages":"Article 107418"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401025001433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Design and evaluation of potent multiepitope broad spectrum DNA and protein vaccine candidates against leptospirosis
Leptospirosis is a widespread zoonotic disease that causes severe health complications with no approved vaccine which provide broad range protection. In this study, we have focused on LruC protein from the outer membrane of Leptospira spp. LruC protein has been considered as promising target for vaccine due to its immunogenicity and conservancy. We have identified total 13 conserved B-cell, CTL, and HTL epitopes from 22 different pathogenic Leptospira species and serovars, which were linked with 4 linkers and 3 adjuvants (HBHA, CTB, TLR4) to design 36 multiepitope vaccine constructs to study the effect of different components on vaccine effectiveness. The antigenicity, immunogenicity, and non-allergenicity of the constructs were confirmed through computational analyses. Physico-chemical properties, secondary structure, and tertiary models of the vaccine constructs were predicted and validated. Molecular docking studies were conducted with Toll-like receptors (TLR2, TLR4) to assess binding affinity, identifying three top vaccine candidates (HBHA-construct 6, CTB-construct 9, and TLR4-construct 12) for further investigation. Further, these candidates were successfully cloned into pVAX1 and pET30a vectors to prepare DNA and protein vaccines, respectively. Moreover, these multiepitope vaccines were tested in mice models to assess its immunogenicity. ELISA performed with antisera against vaccine antigen, as well as crude extract of pathogenic Leptospira species showed significant IgG responses, particularly in protein vaccines. Flow cytometry revealed increased IFN-γ producing CD4+ and CD8+ T cells, especially in the TLR4-adjuvanted vaccine groups. The microscopic agglutination test further confirmed the specificity of the antibody response to Leptospira serovars. Overall, this study demonstrates the potential of these multiepitope vaccine constructs in eliciting a robust immune response, laying the foundation for future challenge study and preclinical evaluation.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)