Juan Liu, Jihong Hu, Pingqiu Zhou, Yaqin Duan, Shuigui Yin
{"title":"致病性NR2F1基因变异破坏转录活性,导致Bosch-Boonstra-Schaaf综合征的严重神经发育迟缓。","authors":"Juan Liu, Jihong Hu, Pingqiu Zhou, Yaqin Duan, Shuigui Yin","doi":"10.1186/s41065-025-00394-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nuclear receptor subfamily 2, group F, member 1 (NR2F1) gene variations are associated with Bosch-Boonstra-Schaaf optic atrophy syndrome. The NR2F1 genotype correlates with its phenotype; variants within the DNA-binding domain may cause severe psychomotor developmental disorders. However, the mechanisms underlying these phenotypes remain unclear.</p><p><strong>Methods: </strong>Whole-exome sequencing was performed on the proband and her parents DNA. Candidate variants were verified by Sanger sequencing and bioinformatics analyses. Molecular dynamics simulations were performed to predict structural changes in the mutant NR2F1 protein. A dual-luciferase assay was used to analyze the variant's effect on transcriptional activation.</p><p><strong>Results: </strong>The proband was a 10-month-old girl with severe motor and cognitive developmental delays accompanied by bilateral optic nerve pallor. Genetic testing revealed a novel NR2F1 gene variant, NM_005654.6: c.452T > A (p.Met151Lys). Bioinformatics analysis suggested that this variant alters the protein structure or function. The molecular dynamics analysis showed that this variant might affect the stability of the zinc finger structure within the NR2F1 DNA-binding domain. Dual-luciferase assays indicated this variant affects transcriptional activation.</p><p><strong>Conclusions: </strong>The NR2F1 variant c.452T > A (p.Met151Lys) may genetically cause the severe clinical phenotypes observed in this patient. This finding expands the spectrum of NR2F1 variants.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"30"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871647/pdf/","citationCount":"0","resultStr":"{\"title\":\"A pathogenic NR2F1 gene variant disrupts transcriptional activity and causes severe neurodevelopmental delay in Bosch-Boonstra-Schaaf syndrome.\",\"authors\":\"Juan Liu, Jihong Hu, Pingqiu Zhou, Yaqin Duan, Shuigui Yin\",\"doi\":\"10.1186/s41065-025-00394-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Nuclear receptor subfamily 2, group F, member 1 (NR2F1) gene variations are associated with Bosch-Boonstra-Schaaf optic atrophy syndrome. The NR2F1 genotype correlates with its phenotype; variants within the DNA-binding domain may cause severe psychomotor developmental disorders. However, the mechanisms underlying these phenotypes remain unclear.</p><p><strong>Methods: </strong>Whole-exome sequencing was performed on the proband and her parents DNA. Candidate variants were verified by Sanger sequencing and bioinformatics analyses. Molecular dynamics simulations were performed to predict structural changes in the mutant NR2F1 protein. A dual-luciferase assay was used to analyze the variant's effect on transcriptional activation.</p><p><strong>Results: </strong>The proband was a 10-month-old girl with severe motor and cognitive developmental delays accompanied by bilateral optic nerve pallor. Genetic testing revealed a novel NR2F1 gene variant, NM_005654.6: c.452T > A (p.Met151Lys). Bioinformatics analysis suggested that this variant alters the protein structure or function. The molecular dynamics analysis showed that this variant might affect the stability of the zinc finger structure within the NR2F1 DNA-binding domain. Dual-luciferase assays indicated this variant affects transcriptional activation.</p><p><strong>Conclusions: </strong>The NR2F1 variant c.452T > A (p.Met151Lys) may genetically cause the severe clinical phenotypes observed in this patient. This finding expands the spectrum of NR2F1 variants.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"30\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00394-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00394-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
简介:核受体亚家族2,F组,成员1 (NR2F1)基因变异与Bosch-Boonstra-Schaaf视神经萎缩综合征相关。NR2F1基因型与其表型相关;dna结合域内的变异可能导致严重的精神运动性发育障碍。然而,这些表型背后的机制尚不清楚。方法:对先证者及其父母DNA进行全外显子组测序。候选变异通过Sanger测序和生物信息学分析进行验证。通过分子动力学模拟来预测突变体NR2F1蛋白的结构变化。双荧光素酶试验用于分析变异对转录激活的影响。结果:先证者是一名10个月大的女婴,伴有严重的运动和认知发育迟缓,并伴有双侧视神经苍白。基因检测发现一个新的NR2F1基因变异,NM_005654.6: c.452T > a (p.Met151Lys)。生物信息学分析表明,这种变异改变了蛋白质的结构或功能。分子动力学分析表明,该变异可能影响NR2F1 dna结合域内锌指结构的稳定性。双荧光素酶测定表明这种变异影响转录激活。结论:NR2F1变异体c.452T > A (p.Met151Lys)可能是导致该患者出现严重临床表型的遗传原因。这一发现扩大了NR2F1变异的范围。
A pathogenic NR2F1 gene variant disrupts transcriptional activity and causes severe neurodevelopmental delay in Bosch-Boonstra-Schaaf syndrome.
Introduction: Nuclear receptor subfamily 2, group F, member 1 (NR2F1) gene variations are associated with Bosch-Boonstra-Schaaf optic atrophy syndrome. The NR2F1 genotype correlates with its phenotype; variants within the DNA-binding domain may cause severe psychomotor developmental disorders. However, the mechanisms underlying these phenotypes remain unclear.
Methods: Whole-exome sequencing was performed on the proband and her parents DNA. Candidate variants were verified by Sanger sequencing and bioinformatics analyses. Molecular dynamics simulations were performed to predict structural changes in the mutant NR2F1 protein. A dual-luciferase assay was used to analyze the variant's effect on transcriptional activation.
Results: The proband was a 10-month-old girl with severe motor and cognitive developmental delays accompanied by bilateral optic nerve pallor. Genetic testing revealed a novel NR2F1 gene variant, NM_005654.6: c.452T > A (p.Met151Lys). Bioinformatics analysis suggested that this variant alters the protein structure or function. The molecular dynamics analysis showed that this variant might affect the stability of the zinc finger structure within the NR2F1 DNA-binding domain. Dual-luciferase assays indicated this variant affects transcriptional activation.
Conclusions: The NR2F1 variant c.452T > A (p.Met151Lys) may genetically cause the severe clinical phenotypes observed in this patient. This finding expands the spectrum of NR2F1 variants.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.