{"title":"乳腺病理中1型鼻毛尖综合征(TRPS1):诊断的实用性和缺陷。","authors":"Atif Ali Hashmi, Edi Brogi, Hannah Y Wen","doi":"10.1186/s13000-025-01623-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Breast cancer, especially triple-negative breast cancer (TNBC), lacks sensitive and specific diagnostic markers that can reliably differentiate it from carcinomas of other origins. TRPS1 is a relatively new immunohistochemical (IHC) marker that has demonstrated higher sensitivity in breast cancer, including TNBC. However, with the increasing use of this marker, broader immunoreactivity has been observed. This study aims to evaluate the utility of TRPS1 for establishing carcinoma of mammary origin. We compared the diagnostic sensitivity and specificity of TRPS1 with that of other IHC markers (GATA3 and SOX10).</p><p><strong>Methods: </strong>In this retrospective study, we reviewed TRPS1 IHC performed at our center between 07/2022 and 06/2024, to evaluate the expression of TRPS1 in breast carcinoma (primary and distant metastasis) and in other malignancies. The sensitivity and specificity of TRPS1 in determining carcinoma of breast origin were compared with those of GATA3 and SOX10.</p><p><strong>Results: </strong>The study cohort comprised 106 cases, including 17 cases at the primary site, and 89 samples of distant metastasis. After correlation with morphology, immunophenotype and molecular studies, 94 cases (88.7%) were characterized as breast primary (37.9% ER+/HER2neu-, 4.6% ER-/HER2neu+, 1.1% ER+/HER2neu+, 56.3% TNBC), whereas 12 (11.3%) were non-breast primary. The non-breast primary sites included lung, bladder, Mullerian, and gastrointestinal. The sensitivity and specificity of TRPS1 were 93.6% and 58.3%, respectively. Conversely, GATA3 demonstrated a sensitivity and specificity of 76.9% and 66.7%, respectively. SOX10 exhibited the lowest sensitivity at 47.9%, but with the highest specificity at 100%. There were three cases of metastatic breast carcinoma (sites: bladder, lung, and bone), where TRPS1 was the only positive marker, whereas GATA3 and SOX10 were negative. TRPS1 showed a higher positivity rate (92.0%) in TNBC compared to GATA3 (63.4%) and SOX10 (56.7%). TRPS1 expression was also observed in other tumor types, including carcinoma of Mullerian origin, bladder, and lung, limiting its utility in the differential diagnosis.</p><p><strong>Conclusion: </strong>Our study demonstrated a higher sensitivity of TRPS1 expression in establishing carcinoma of breast origin compared with GATA3 and SOX10, consistent with previous reported studies. However, the specificity of TRPS1 was lower than that of GATA3 and SOX10. These findings suggest that while TRPS1 can be used as a reliable marker for breast cancer, its expression in other tumor types should be carefully interpreted to avoid diagnostic pitfalls.</p>","PeriodicalId":11237,"journal":{"name":"Diagnostic Pathology","volume":"20 1","pages":"26"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trichorhinophalangeal syndrome type 1 (TRPS1) in breast pathology: diagnostic utility and pitfalls.\",\"authors\":\"Atif Ali Hashmi, Edi Brogi, Hannah Y Wen\",\"doi\":\"10.1186/s13000-025-01623-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Breast cancer, especially triple-negative breast cancer (TNBC), lacks sensitive and specific diagnostic markers that can reliably differentiate it from carcinomas of other origins. TRPS1 is a relatively new immunohistochemical (IHC) marker that has demonstrated higher sensitivity in breast cancer, including TNBC. However, with the increasing use of this marker, broader immunoreactivity has been observed. This study aims to evaluate the utility of TRPS1 for establishing carcinoma of mammary origin. We compared the diagnostic sensitivity and specificity of TRPS1 with that of other IHC markers (GATA3 and SOX10).</p><p><strong>Methods: </strong>In this retrospective study, we reviewed TRPS1 IHC performed at our center between 07/2022 and 06/2024, to evaluate the expression of TRPS1 in breast carcinoma (primary and distant metastasis) and in other malignancies. The sensitivity and specificity of TRPS1 in determining carcinoma of breast origin were compared with those of GATA3 and SOX10.</p><p><strong>Results: </strong>The study cohort comprised 106 cases, including 17 cases at the primary site, and 89 samples of distant metastasis. After correlation with morphology, immunophenotype and molecular studies, 94 cases (88.7%) were characterized as breast primary (37.9% ER+/HER2neu-, 4.6% ER-/HER2neu+, 1.1% ER+/HER2neu+, 56.3% TNBC), whereas 12 (11.3%) were non-breast primary. The non-breast primary sites included lung, bladder, Mullerian, and gastrointestinal. The sensitivity and specificity of TRPS1 were 93.6% and 58.3%, respectively. Conversely, GATA3 demonstrated a sensitivity and specificity of 76.9% and 66.7%, respectively. SOX10 exhibited the lowest sensitivity at 47.9%, but with the highest specificity at 100%. There were three cases of metastatic breast carcinoma (sites: bladder, lung, and bone), where TRPS1 was the only positive marker, whereas GATA3 and SOX10 were negative. TRPS1 showed a higher positivity rate (92.0%) in TNBC compared to GATA3 (63.4%) and SOX10 (56.7%). TRPS1 expression was also observed in other tumor types, including carcinoma of Mullerian origin, bladder, and lung, limiting its utility in the differential diagnosis.</p><p><strong>Conclusion: </strong>Our study demonstrated a higher sensitivity of TRPS1 expression in establishing carcinoma of breast origin compared with GATA3 and SOX10, consistent with previous reported studies. However, the specificity of TRPS1 was lower than that of GATA3 and SOX10. These findings suggest that while TRPS1 can be used as a reliable marker for breast cancer, its expression in other tumor types should be carefully interpreted to avoid diagnostic pitfalls.</p>\",\"PeriodicalId\":11237,\"journal\":{\"name\":\"Diagnostic Pathology\",\"volume\":\"20 1\",\"pages\":\"26\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13000-025-01623-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-025-01623-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Trichorhinophalangeal syndrome type 1 (TRPS1) in breast pathology: diagnostic utility and pitfalls.
Introduction: Breast cancer, especially triple-negative breast cancer (TNBC), lacks sensitive and specific diagnostic markers that can reliably differentiate it from carcinomas of other origins. TRPS1 is a relatively new immunohistochemical (IHC) marker that has demonstrated higher sensitivity in breast cancer, including TNBC. However, with the increasing use of this marker, broader immunoreactivity has been observed. This study aims to evaluate the utility of TRPS1 for establishing carcinoma of mammary origin. We compared the diagnostic sensitivity and specificity of TRPS1 with that of other IHC markers (GATA3 and SOX10).
Methods: In this retrospective study, we reviewed TRPS1 IHC performed at our center between 07/2022 and 06/2024, to evaluate the expression of TRPS1 in breast carcinoma (primary and distant metastasis) and in other malignancies. The sensitivity and specificity of TRPS1 in determining carcinoma of breast origin were compared with those of GATA3 and SOX10.
Results: The study cohort comprised 106 cases, including 17 cases at the primary site, and 89 samples of distant metastasis. After correlation with morphology, immunophenotype and molecular studies, 94 cases (88.7%) were characterized as breast primary (37.9% ER+/HER2neu-, 4.6% ER-/HER2neu+, 1.1% ER+/HER2neu+, 56.3% TNBC), whereas 12 (11.3%) were non-breast primary. The non-breast primary sites included lung, bladder, Mullerian, and gastrointestinal. The sensitivity and specificity of TRPS1 were 93.6% and 58.3%, respectively. Conversely, GATA3 demonstrated a sensitivity and specificity of 76.9% and 66.7%, respectively. SOX10 exhibited the lowest sensitivity at 47.9%, but with the highest specificity at 100%. There were three cases of metastatic breast carcinoma (sites: bladder, lung, and bone), where TRPS1 was the only positive marker, whereas GATA3 and SOX10 were negative. TRPS1 showed a higher positivity rate (92.0%) in TNBC compared to GATA3 (63.4%) and SOX10 (56.7%). TRPS1 expression was also observed in other tumor types, including carcinoma of Mullerian origin, bladder, and lung, limiting its utility in the differential diagnosis.
Conclusion: Our study demonstrated a higher sensitivity of TRPS1 expression in establishing carcinoma of breast origin compared with GATA3 and SOX10, consistent with previous reported studies. However, the specificity of TRPS1 was lower than that of GATA3 and SOX10. These findings suggest that while TRPS1 can be used as a reliable marker for breast cancer, its expression in other tumor types should be carefully interpreted to avoid diagnostic pitfalls.
期刊介绍:
Diagnostic Pathology is an open access, peer-reviewed, online journal that considers research in surgical and clinical pathology, immunology, and biology, with a special focus on cutting-edge approaches in diagnostic pathology and tissue-based therapy. The journal covers all aspects of surgical pathology, including classic diagnostic pathology, prognosis-related diagnosis (tumor stages, prognosis markers, such as MIB-percentage, hormone receptors, etc.), and therapy-related findings. The journal also focuses on the technological aspects of pathology, including molecular biology techniques, morphometry aspects (stereology, DNA analysis, syntactic structure analysis), communication aspects (telecommunication, virtual microscopy, virtual pathology institutions, etc.), and electronic education and quality assurance (for example interactive publication, on-line references with automated updating, etc.).