鲍曼不动杆菌丝氨酸蛋白酶 HtrA 是应激反应、运动、鞭毛止血和感染性的多效调节因子。

IF 5.2 1区 生物学 Q1 BIOLOGY
Kai Zhang, Ching Wooen Sze, Hang Zhao, Jun Liu, Chunhao Li
{"title":"鲍曼不动杆菌丝氨酸蛋白酶 HtrA 是应激反应、运动、鞭毛止血和感染性的多效调节因子。","authors":"Kai Zhang, Ching Wooen Sze, Hang Zhao, Jun Liu, Chunhao Li","doi":"10.1038/s42003-025-07781-x","DOIUrl":null,"url":null,"abstract":"<p><p>High-temperature requirement protease A (HtrA) is a family of serine proteases that regulate bacterial stress response through controlling protein quality. This report shows that the Lyme disease bacterium Borrelia burgdorferi HtrA has a pleiotropic role in regulation of bacterial stress response, motility, flagellar hemostasis, and infectivity. Loss-of-function study first shows that a deletion mutant of htrA (∆htrA) fails to establish an infection in a murine model of Lyme disease. Interestingly, this defect can be restored only with its endogenous promoter. Follow up mechanistic study reveals that the expression of htrA varies under different growth conditions and is finely regulated and that deletion of htrA leads to dysregulation of several key virulence determinants of B. burgdorferi. We also find that deletion of htrA abrogates the ability of B. burgdorferi to survive at high temperatures and that the ∆htrA mutant has defects in locomotion as the expression of several key chemotaxis proteins are significantly downregulated. Cryo-electron tomography analysis further reveals that deletion of htrA disrupts flagellar homeostasis, e.g., the mutant has short and misplaced flagella that fail to form a ribbon-like structure to propel bacterial locomotion. This report provides new insights into understanding the role of HtrA in spirochetes.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"341"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Borrelia burgdorferi serine protease HtrA is a pleiotropic regulator of stress response, motility, flagellar hemostasis, and infectivity.\",\"authors\":\"Kai Zhang, Ching Wooen Sze, Hang Zhao, Jun Liu, Chunhao Li\",\"doi\":\"10.1038/s42003-025-07781-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-temperature requirement protease A (HtrA) is a family of serine proteases that regulate bacterial stress response through controlling protein quality. This report shows that the Lyme disease bacterium Borrelia burgdorferi HtrA has a pleiotropic role in regulation of bacterial stress response, motility, flagellar hemostasis, and infectivity. Loss-of-function study first shows that a deletion mutant of htrA (∆htrA) fails to establish an infection in a murine model of Lyme disease. Interestingly, this defect can be restored only with its endogenous promoter. Follow up mechanistic study reveals that the expression of htrA varies under different growth conditions and is finely regulated and that deletion of htrA leads to dysregulation of several key virulence determinants of B. burgdorferi. We also find that deletion of htrA abrogates the ability of B. burgdorferi to survive at high temperatures and that the ∆htrA mutant has defects in locomotion as the expression of several key chemotaxis proteins are significantly downregulated. Cryo-electron tomography analysis further reveals that deletion of htrA disrupts flagellar homeostasis, e.g., the mutant has short and misplaced flagella that fail to form a ribbon-like structure to propel bacterial locomotion. This report provides new insights into understanding the role of HtrA in spirochetes.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"341\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-07781-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07781-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Borrelia burgdorferi serine protease HtrA is a pleiotropic regulator of stress response, motility, flagellar hemostasis, and infectivity.

High-temperature requirement protease A (HtrA) is a family of serine proteases that regulate bacterial stress response through controlling protein quality. This report shows that the Lyme disease bacterium Borrelia burgdorferi HtrA has a pleiotropic role in regulation of bacterial stress response, motility, flagellar hemostasis, and infectivity. Loss-of-function study first shows that a deletion mutant of htrA (∆htrA) fails to establish an infection in a murine model of Lyme disease. Interestingly, this defect can be restored only with its endogenous promoter. Follow up mechanistic study reveals that the expression of htrA varies under different growth conditions and is finely regulated and that deletion of htrA leads to dysregulation of several key virulence determinants of B. burgdorferi. We also find that deletion of htrA abrogates the ability of B. burgdorferi to survive at high temperatures and that the ∆htrA mutant has defects in locomotion as the expression of several key chemotaxis proteins are significantly downregulated. Cryo-electron tomography analysis further reveals that deletion of htrA disrupts flagellar homeostasis, e.g., the mutant has short and misplaced flagella that fail to form a ribbon-like structure to propel bacterial locomotion. This report provides new insights into understanding the role of HtrA in spirochetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信