层合策略对激光定向能沉积原位合成TiN/TC4层合材料性能的影响

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiheng Tai, Yongqiang Yang, Jiale Lv, Yang Wei, Xiaoqi Chen, Guijun Bi, Jie Chen, Lijia Chen, Wei Zhou, Vyacheslav Trofimov, Di Wang
{"title":"层合策略对激光定向能沉积原位合成TiN/TC4层合材料性能的影响","authors":"Zhiheng Tai,&nbsp;Yongqiang Yang,&nbsp;Jiale Lv,&nbsp;Yang Wei,&nbsp;Xiaoqi Chen,&nbsp;Guijun Bi,&nbsp;Jie Chen,&nbsp;Lijia Chen,&nbsp;Wei Zhou,&nbsp;Vyacheslav Trofimov,&nbsp;Di Wang","doi":"10.1002/adem.202402473","DOIUrl":null,"url":null,"abstract":"<p>Laser-directed energy deposition (LDED) additive manufacturing presents significant advantages for fabricating laminated materials with enhanced mechanical properties. This study investigates the in situ synthesis of TiN/TC4 laminated materials, developed using different layering strategies in the LDED process under alternating atmospheres of pure argon and nitrogen–argon gas mixtures. The effects of these layering strategies on the microstructure and mechanical properties of the synthesized materials are systematically analyzed. As the proportion of in situ synthesized layers increases, significant microstructural evolution is observed: the average grain size increases, the structure transitions from a Widmanstätten pattern to a basketweave structure, and the grain morphology shifts from columnar to equiaxed crystals. Correspondingly, the elongation at fracture decreases, while tensile strength initially increases and then declines. Notably, the 2-1 layering strategy achieves a peak tensile strength of 1135.0 ± 26.8 MPa, reflecting a 21.6% improvement compared to titanium alloy samples fabricated in a pure argon atmosphere. This study highlights the versatility of combining LDED with controlled deposition atmospheres to enable the tailored synthesis of laminated materials. The ability to manipulate microstructure and mechanical properties through specific layering strategies offers significant potential for advancing the development and application of high-performance laminated materials.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Layering Strategies on the Properties of In Situ Synthesized TiN/TC4 Laminated Materials via Laser-Directed Energy Deposition\",\"authors\":\"Zhiheng Tai,&nbsp;Yongqiang Yang,&nbsp;Jiale Lv,&nbsp;Yang Wei,&nbsp;Xiaoqi Chen,&nbsp;Guijun Bi,&nbsp;Jie Chen,&nbsp;Lijia Chen,&nbsp;Wei Zhou,&nbsp;Vyacheslav Trofimov,&nbsp;Di Wang\",\"doi\":\"10.1002/adem.202402473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-directed energy deposition (LDED) additive manufacturing presents significant advantages for fabricating laminated materials with enhanced mechanical properties. This study investigates the in situ synthesis of TiN/TC4 laminated materials, developed using different layering strategies in the LDED process under alternating atmospheres of pure argon and nitrogen–argon gas mixtures. The effects of these layering strategies on the microstructure and mechanical properties of the synthesized materials are systematically analyzed. As the proportion of in situ synthesized layers increases, significant microstructural evolution is observed: the average grain size increases, the structure transitions from a Widmanstätten pattern to a basketweave structure, and the grain morphology shifts from columnar to equiaxed crystals. Correspondingly, the elongation at fracture decreases, while tensile strength initially increases and then declines. Notably, the 2-1 layering strategy achieves a peak tensile strength of 1135.0 ± 26.8 MPa, reflecting a 21.6% improvement compared to titanium alloy samples fabricated in a pure argon atmosphere. This study highlights the versatility of combining LDED with controlled deposition atmospheres to enable the tailored synthesis of laminated materials. The ability to manipulate microstructure and mechanical properties through specific layering strategies offers significant potential for advancing the development and application of high-performance laminated materials.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402473\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402473","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光能量沉积(LDED)快速成型技术在制造具有更强机械性能的层状材料方面具有显著优势。本研究探讨了在纯氩气和氮氩混合气体交替气氛下,利用 LDED 工艺中的不同分层策略原位合成 TiN/TC4 层状材料的过程。系统分析了这些分层策略对合成材料微观结构和机械性能的影响。随着原位合成层所占比例的增加,观察到了显著的微观结构演变:平均晶粒尺寸增大,结构从维德曼斯泰滕模式过渡到篮织结构,晶粒形态从柱状晶体转变为等轴晶。相应地,断裂伸长率下降,而抗拉强度则先上升后下降。值得注意的是,2-1 分层策略实现了 1135.0 ± 26.8 兆帕的峰值拉伸强度,与在纯氩气氛中制造的钛合金样品相比提高了 21.6%。这项研究强调了 LDED 与可控沉积气氛相结合的多功能性,可实现层状材料的定制合成。通过特定的分层策略操纵微观结构和机械性能的能力为推动高性能层压材料的开发和应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of Layering Strategies on the Properties of In Situ Synthesized TiN/TC4 Laminated Materials via Laser-Directed Energy Deposition

Impact of Layering Strategies on the Properties of In Situ Synthesized TiN/TC4 Laminated Materials via Laser-Directed Energy Deposition

Laser-directed energy deposition (LDED) additive manufacturing presents significant advantages for fabricating laminated materials with enhanced mechanical properties. This study investigates the in situ synthesis of TiN/TC4 laminated materials, developed using different layering strategies in the LDED process under alternating atmospheres of pure argon and nitrogen–argon gas mixtures. The effects of these layering strategies on the microstructure and mechanical properties of the synthesized materials are systematically analyzed. As the proportion of in situ synthesized layers increases, significant microstructural evolution is observed: the average grain size increases, the structure transitions from a Widmanstätten pattern to a basketweave structure, and the grain morphology shifts from columnar to equiaxed crystals. Correspondingly, the elongation at fracture decreases, while tensile strength initially increases and then declines. Notably, the 2-1 layering strategy achieves a peak tensile strength of 1135.0 ± 26.8 MPa, reflecting a 21.6% improvement compared to titanium alloy samples fabricated in a pure argon atmosphere. This study highlights the versatility of combining LDED with controlled deposition atmospheres to enable the tailored synthesis of laminated materials. The ability to manipulate microstructure and mechanical properties through specific layering strategies offers significant potential for advancing the development and application of high-performance laminated materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信