MultiJSQ:基于深度多任务回归网络的左心室直接关节分割与定量

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiuquan Du, Zheng Pei, Ying Liu, Xinzhi Cao, Lei Li, Shuo Li
{"title":"MultiJSQ:基于深度多任务回归网络的左心室直接关节分割与定量","authors":"Xiuquan Du,&nbsp;Zheng Pei,&nbsp;Ying Liu,&nbsp;Xinzhi Cao,&nbsp;Lei Li,&nbsp;Shuo Li","doi":"10.1049/cit2.12382","DOIUrl":null,"url":null,"abstract":"<p>Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease. However, the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process. In this study, the authors introduce a framework named MultiJSQ, comprising the feature presentation network (FRN) and the indicator prediction network (IEN), which is designed for simultaneous joint segmentation and quantification. The FRN is tailored for representing global image features, facilitating the direct acquisition of left ventricle (LV) contour images through pixel classification. Additionally, the IEN incorporates specifically designed modules to extract relevant clinical indices. The authors’ method considers the interdependence of different tasks, demonstrating the validity of these relationships and yielding favourable results. Through extensive experiments on cardiac MR images from 145 patients, MultiJSQ achieves impressive outcomes, with low mean absolute errors of 124 mm<sup>2</sup>, 1.72 mm, and 1.21 mm for areas, dimensions, and regional wall thicknesses, respectively, along with a Dice metric score of 0.908. The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification, highlighting its promising clinical application prospects.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 1","pages":"175-192"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12382","citationCount":"0","resultStr":"{\"title\":\"MultiJSQ: Direct joint segmentation and quantification of left ventricle with deep multitask-derived regression network\",\"authors\":\"Xiuquan Du,&nbsp;Zheng Pei,&nbsp;Ying Liu,&nbsp;Xinzhi Cao,&nbsp;Lei Li,&nbsp;Shuo Li\",\"doi\":\"10.1049/cit2.12382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease. However, the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process. In this study, the authors introduce a framework named MultiJSQ, comprising the feature presentation network (FRN) and the indicator prediction network (IEN), which is designed for simultaneous joint segmentation and quantification. The FRN is tailored for representing global image features, facilitating the direct acquisition of left ventricle (LV) contour images through pixel classification. Additionally, the IEN incorporates specifically designed modules to extract relevant clinical indices. The authors’ method considers the interdependence of different tasks, demonstrating the validity of these relationships and yielding favourable results. Through extensive experiments on cardiac MR images from 145 patients, MultiJSQ achieves impressive outcomes, with low mean absolute errors of 124 mm<sup>2</sup>, 1.72 mm, and 1.21 mm for areas, dimensions, and regional wall thicknesses, respectively, along with a Dice metric score of 0.908. The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification, highlighting its promising clinical application prospects.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"10 1\",\"pages\":\"175-192\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12382\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12382","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从MRI图像中定量分析临床功能参数对心血管疾病的诊断和评估至关重要。然而,由于患者之间的高度可变性和过程的耗时性,人工计算这些参数是具有挑战性的。在本研究中,作者引入了一个由特征表示网络(FRN)和指标预测网络(IEN)组成的MultiJSQ框架,用于同时联合分割和量化。FRN是为表示全局图像特征而定制的,便于通过像素分类直接获取左心室(LV)轮廓图像。此外,IEN结合了专门设计的模块来提取相关的临床指标。作者的方法考虑了不同任务的相互依赖性,证明了这些关系的有效性并产生了有利的结果。通过对145名患者的心脏MR图像进行广泛的实验,MultiJSQ取得了令人印象深刻的结果,面积、尺寸和区域壁厚的平均绝对误差分别为124 mm2、1.72 mm和1.21 mm, Dice度量评分为0.908。实验结果显示了我们的框架在LV分割和量化方面的优异表现,凸显了其良好的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MultiJSQ: Direct joint segmentation and quantification of left ventricle with deep multitask-derived regression network

MultiJSQ: Direct joint segmentation and quantification of left ventricle with deep multitask-derived regression network

Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease. However, the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process. In this study, the authors introduce a framework named MultiJSQ, comprising the feature presentation network (FRN) and the indicator prediction network (IEN), which is designed for simultaneous joint segmentation and quantification. The FRN is tailored for representing global image features, facilitating the direct acquisition of left ventricle (LV) contour images through pixel classification. Additionally, the IEN incorporates specifically designed modules to extract relevant clinical indices. The authors’ method considers the interdependence of different tasks, demonstrating the validity of these relationships and yielding favourable results. Through extensive experiments on cardiac MR images from 145 patients, MultiJSQ achieves impressive outcomes, with low mean absolute errors of 124 mm2, 1.72 mm, and 1.21 mm for areas, dimensions, and regional wall thicknesses, respectively, along with a Dice metric score of 0.908. The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification, highlighting its promising clinical application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信