通过控制再结晶形貌提高高合金化Al-Zn-Mg-Cu合金的抗应力腐蚀开裂性能

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyang Yu, Xiwu Li, Kai Wen, Kai Zhu, Guohui Shi, Yongan Zhang, Zhihui Li, Baiqing Xiong
{"title":"通过控制再结晶形貌提高高合金化Al-Zn-Mg-Cu合金的抗应力腐蚀开裂性能","authors":"Mingyang Yu,&nbsp;Xiwu Li,&nbsp;Kai Wen,&nbsp;Kai Zhu,&nbsp;Guohui Shi,&nbsp;Yongan Zhang,&nbsp;Zhihui Li,&nbsp;Baiqing Xiong","doi":"10.1002/adem.202402373","DOIUrl":null,"url":null,"abstract":"<p>Al–Zn–Mg–Cu alloys are widely used in aerospace, with recrystallization significantly influencing their stress corrosion resistance. This study examines the impact of recrystallization morphology on corrosion resistance in a high-alloying Al–Zn–Mg–Cu alloy, focusing on lath-shaped and equiaxed recrystallized grains. The findings reveal that, at the same recrystallization fraction, the equiaxed sample has a 2.83 times higher corrosion current density and a 1.15 times higher stress corrosion cracking susceptibility index than the lath sample. However, its critical stress intensity factor is only 89.3% of the lath alloy's. Lath recrystallization demonstrates superior stress corrosion resistance due to larger grain sizes, wider grain boundary precipitate spacing, lower Zn and Mg content, and higher Cu content. Finite element simulations and in-situ tensile tests show that the equiaxed sample experiences more stress concentration and cracking at grain boundaries under the same applied stress. These results provide insights into optimizing the stress corrosion resistance of Al–Zn–Mg–Cu alloys.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Stress Corrosion Cracking Resistance in a High Alloying Al–Zn–Mg–Cu Alloy by Controlling Recrystallization Morphology\",\"authors\":\"Mingyang Yu,&nbsp;Xiwu Li,&nbsp;Kai Wen,&nbsp;Kai Zhu,&nbsp;Guohui Shi,&nbsp;Yongan Zhang,&nbsp;Zhihui Li,&nbsp;Baiqing Xiong\",\"doi\":\"10.1002/adem.202402373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Al–Zn–Mg–Cu alloys are widely used in aerospace, with recrystallization significantly influencing their stress corrosion resistance. This study examines the impact of recrystallization morphology on corrosion resistance in a high-alloying Al–Zn–Mg–Cu alloy, focusing on lath-shaped and equiaxed recrystallized grains. The findings reveal that, at the same recrystallization fraction, the equiaxed sample has a 2.83 times higher corrosion current density and a 1.15 times higher stress corrosion cracking susceptibility index than the lath sample. However, its critical stress intensity factor is only 89.3% of the lath alloy's. Lath recrystallization demonstrates superior stress corrosion resistance due to larger grain sizes, wider grain boundary precipitate spacing, lower Zn and Mg content, and higher Cu content. Finite element simulations and in-situ tensile tests show that the equiaxed sample experiences more stress concentration and cracking at grain boundaries under the same applied stress. These results provide insights into optimizing the stress corrosion resistance of Al–Zn–Mg–Cu alloys.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402373\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402373","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Al-Zn-Mg-Cu合金广泛应用于航空航天领域,其再结晶对其抗应力腐蚀性能有重要影响。本研究考察了高合金化Al-Zn-Mg-Cu合金的再结晶形貌对耐蚀性的影响,重点研究了板条形和等轴形再结晶晶粒。结果表明:在相同再结晶分数下,等轴试样的腐蚀电流密度比板条试样高2.83倍,应力腐蚀开裂敏感性指数比板条试样高1.15倍;但其临界应力强度因子仅为板条合金的89.3%。板条再结晶具有较大的晶粒尺寸、较宽的晶界析出间距、较低的Zn和Mg含量以及较高的Cu含量,具有较好的抗应力腐蚀性能。有限元模拟和现场拉伸试验表明,在相同的外加应力下,等轴试样在晶界处出现更多的应力集中和裂纹。这些结果为优化Al-Zn-Mg-Cu合金的抗应力腐蚀性能提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Stress Corrosion Cracking Resistance in a High Alloying Al–Zn–Mg–Cu Alloy by Controlling Recrystallization Morphology

Enhancing Stress Corrosion Cracking Resistance in a High Alloying Al–Zn–Mg–Cu Alloy by Controlling Recrystallization Morphology

Al–Zn–Mg–Cu alloys are widely used in aerospace, with recrystallization significantly influencing their stress corrosion resistance. This study examines the impact of recrystallization morphology on corrosion resistance in a high-alloying Al–Zn–Mg–Cu alloy, focusing on lath-shaped and equiaxed recrystallized grains. The findings reveal that, at the same recrystallization fraction, the equiaxed sample has a 2.83 times higher corrosion current density and a 1.15 times higher stress corrosion cracking susceptibility index than the lath sample. However, its critical stress intensity factor is only 89.3% of the lath alloy's. Lath recrystallization demonstrates superior stress corrosion resistance due to larger grain sizes, wider grain boundary precipitate spacing, lower Zn and Mg content, and higher Cu content. Finite element simulations and in-situ tensile tests show that the equiaxed sample experiences more stress concentration and cracking at grain boundaries under the same applied stress. These results provide insights into optimizing the stress corrosion resistance of Al–Zn–Mg–Cu alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信