动态和静态载荷下绝缘棒的应力分析和结构优化

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-12-30 DOI:10.1049/hve2.12512
Haifeng Jin, Lijun Jin
{"title":"动态和静态载荷下绝缘棒的应力分析和结构优化","authors":"Haifeng Jin,&nbsp;Lijun Jin","doi":"10.1049/hve2.12512","DOIUrl":null,"url":null,"abstract":"<p>This study aims to provide a theoretical basis for the fatigue characteristics and structural optimisation of insulating rods to enhance their reliability and lifespan in practical applications. This paper uses COMSOL to complete the stress analysis of insulating rods under dynamic and static loads based on the finite element method. The correctness of the model is verified based on the elastic-plastic theory. The simulation results show that under the same load, the stress concentration area is more affected by the dynamic load, and the stress concentration position is highly consistent with the fracture position of the rod in the experiment. It verifies the impact on the insulating rods at different speeds and static load stress. Simulation shows that, in cases where the allowable stress is exceeded, as the number of operations increases, the fatigue characteristics will greatly affect the service life of the insulation rod. Finally, the fatigue analysis and structural optimisation of the insulating rod were completed, providing important reference values for the long-term stable operation of ultra-high voltage circuit breakers.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"116-125"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12512","citationCount":"0","resultStr":"{\"title\":\"Stress analysis and structural optimisation of insulating rods under dynamic and static loads\",\"authors\":\"Haifeng Jin,&nbsp;Lijun Jin\",\"doi\":\"10.1049/hve2.12512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to provide a theoretical basis for the fatigue characteristics and structural optimisation of insulating rods to enhance their reliability and lifespan in practical applications. This paper uses COMSOL to complete the stress analysis of insulating rods under dynamic and static loads based on the finite element method. The correctness of the model is verified based on the elastic-plastic theory. The simulation results show that under the same load, the stress concentration area is more affected by the dynamic load, and the stress concentration position is highly consistent with the fracture position of the rod in the experiment. It verifies the impact on the insulating rods at different speeds and static load stress. Simulation shows that, in cases where the allowable stress is exceeded, as the number of operations increases, the fatigue characteristics will greatly affect the service life of the insulation rod. Finally, the fatigue analysis and structural optimisation of the insulating rod were completed, providing important reference values for the long-term stable operation of ultra-high voltage circuit breakers.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"10 1\",\"pages\":\"116-125\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12512\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12512\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12512","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在为绝缘棒的疲劳特性和结构优化提供理论依据,以提高绝缘棒在实际应用中的可靠性和寿命。本文利用COMSOL软件完成了基于有限元法的绝缘棒在动、静荷载作用下的应力分析。基于弹塑性理论验证了模型的正确性。仿真结果表明,在相同载荷下,应力集中区域受动载荷影响较大,且应力集中位置与实验中杆的断裂位置高度一致。验证了不同速度和静载应力对绝缘棒的影响。仿真结果表明,在超过许用应力的情况下,随着操作次数的增加,其疲劳特性将极大地影响绝缘棒的使用寿命。最后,完成了绝缘棒的疲劳分析和结构优化,为超高压断路器的长期稳定运行提供了重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stress analysis and structural optimisation of insulating rods under dynamic and static loads

Stress analysis and structural optimisation of insulating rods under dynamic and static loads

This study aims to provide a theoretical basis for the fatigue characteristics and structural optimisation of insulating rods to enhance their reliability and lifespan in practical applications. This paper uses COMSOL to complete the stress analysis of insulating rods under dynamic and static loads based on the finite element method. The correctness of the model is verified based on the elastic-plastic theory. The simulation results show that under the same load, the stress concentration area is more affected by the dynamic load, and the stress concentration position is highly consistent with the fracture position of the rod in the experiment. It verifies the impact on the insulating rods at different speeds and static load stress. Simulation shows that, in cases where the allowable stress is exceeded, as the number of operations increases, the fatigue characteristics will greatly affect the service life of the insulation rod. Finally, the fatigue analysis and structural optimisation of the insulating rod were completed, providing important reference values for the long-term stable operation of ultra-high voltage circuit breakers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信