Huayang Tang , Dexun Fan , Yian Chen , Shuangyan Han
{"title":"探索酶- MOF(金属-有机框架)催化体系:酶活性和MOF稳定性之间的权衡","authors":"Huayang Tang , Dexun Fan , Yian Chen , Shuangyan Han","doi":"10.1039/d4gc05154h","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes are highly efficient natural catalysts widely used in green biocatalysis, chemical and pharmaceutical industries. However, their industrial applications are often limited by high costs, poor stability, and low activity. Metal–organic frameworks (MOFs), with their exceptional porosity, structural stability, and customizable properties, present a sustainable solution for enzyme immobilization, significantly enhancing stability, reusability, and catalytic efficiency in sustainable green processes. The stability of MOFs often relies on harsh synthesis conditions, while maintaining enzyme activity necessitates natural mild environments. Despite significant research efforts to improve enzymatic performance within MOFs, the trade-offs between MOF stability and enzyme activity in enzyme–MOF hybrid systems remain only partially understood. This review underscores the critical importance of achieving this balance, summarizes the key factors and interactions within enzymes@MOF systems, and provides a comprehensive review of recent advancements aimed at striking this equilibrium, thereby fostering the development of sustainable green catalytic technologies.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 10","pages":"Pages 2605-2628"},"PeriodicalIF":9.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring enzyme–MOF (metal–organic framework) catalytic systems: trade-offs between enzyme activity and MOF stability\",\"authors\":\"Huayang Tang , Dexun Fan , Yian Chen , Shuangyan Han\",\"doi\":\"10.1039/d4gc05154h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enzymes are highly efficient natural catalysts widely used in green biocatalysis, chemical and pharmaceutical industries. However, their industrial applications are often limited by high costs, poor stability, and low activity. Metal–organic frameworks (MOFs), with their exceptional porosity, structural stability, and customizable properties, present a sustainable solution for enzyme immobilization, significantly enhancing stability, reusability, and catalytic efficiency in sustainable green processes. The stability of MOFs often relies on harsh synthesis conditions, while maintaining enzyme activity necessitates natural mild environments. Despite significant research efforts to improve enzymatic performance within MOFs, the trade-offs between MOF stability and enzyme activity in enzyme–MOF hybrid systems remain only partially understood. This review underscores the critical importance of achieving this balance, summarizes the key factors and interactions within enzymes@MOF systems, and provides a comprehensive review of recent advancements aimed at striking this equilibrium, thereby fostering the development of sustainable green catalytic technologies.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 10\",\"pages\":\"Pages 2605-2628\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225001086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225001086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring enzyme–MOF (metal–organic framework) catalytic systems: trade-offs between enzyme activity and MOF stability
Enzymes are highly efficient natural catalysts widely used in green biocatalysis, chemical and pharmaceutical industries. However, their industrial applications are often limited by high costs, poor stability, and low activity. Metal–organic frameworks (MOFs), with their exceptional porosity, structural stability, and customizable properties, present a sustainable solution for enzyme immobilization, significantly enhancing stability, reusability, and catalytic efficiency in sustainable green processes. The stability of MOFs often relies on harsh synthesis conditions, while maintaining enzyme activity necessitates natural mild environments. Despite significant research efforts to improve enzymatic performance within MOFs, the trade-offs between MOF stability and enzyme activity in enzyme–MOF hybrid systems remain only partially understood. This review underscores the critical importance of achieving this balance, summarizes the key factors and interactions within enzymes@MOF systems, and provides a comprehensive review of recent advancements aimed at striking this equilibrium, thereby fostering the development of sustainable green catalytic technologies.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.