LCL滤波器在PHIL PMSM仿真中的去耦电流纹波:基频分析

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nícolas Baschera;Marco Di Benedetto;Alessandro Lidozzi;Luca Solero;Petar J. Grbović
{"title":"LCL滤波器在PHIL PMSM仿真中的去耦电流纹波:基频分析","authors":"Nícolas Baschera;Marco Di Benedetto;Alessandro Lidozzi;Luca Solero;Petar J. Grbović","doi":"10.1109/OJPEL.2025.3541836","DOIUrl":null,"url":null,"abstract":"The traditional machine test benches are known for their inflexibility, safety concerns, weight, and cost. The adoption of Power Hardware-in-the-Loop (PHIL) has been appearing as an enhanced technique to test and validate control algorithms and hardware of Variable Speed Drives (VSDs) for electrical machines. This paper presents the use of the PHIL for the emulation of a Permanent Magnet Synchronous Machine (PMSM) using an LCL coupling network with voltage control. The principle of operation, modeling and control structures are presented in detail. The presented strategy allows the Electrical Machine Emulator (EME) to decouple the low fundamental frequency of the machine from the high frequency (current ripple) of the Device Under Test (DUT) during its operation. The use of different inductances for the reproduction of a machine with a fixed synchronous inductance is addressed in detail, besides the consequences on the current ripple. The theoretical work is supported and validated through experimental tests using an FPGA-Based Real Time Simulator and dedicated control boards (PED-Board).","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"401-415"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884891","citationCount":"0","resultStr":"{\"title\":\"Decoupling Current Ripple in PHIL PMSM Emulation Using LCL Filter: A Fundamental Frequency Analysis\",\"authors\":\"Nícolas Baschera;Marco Di Benedetto;Alessandro Lidozzi;Luca Solero;Petar J. Grbović\",\"doi\":\"10.1109/OJPEL.2025.3541836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional machine test benches are known for their inflexibility, safety concerns, weight, and cost. The adoption of Power Hardware-in-the-Loop (PHIL) has been appearing as an enhanced technique to test and validate control algorithms and hardware of Variable Speed Drives (VSDs) for electrical machines. This paper presents the use of the PHIL for the emulation of a Permanent Magnet Synchronous Machine (PMSM) using an LCL coupling network with voltage control. The principle of operation, modeling and control structures are presented in detail. The presented strategy allows the Electrical Machine Emulator (EME) to decouple the low fundamental frequency of the machine from the high frequency (current ripple) of the Device Under Test (DUT) during its operation. The use of different inductances for the reproduction of a machine with a fixed synchronous inductance is addressed in detail, besides the consequences on the current ripple. The theoretical work is supported and validated through experimental tests using an FPGA-Based Real Time Simulator and dedicated control boards (PED-Board).\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"401-415\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884891\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884891/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10884891/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

传统的机器测试台以其缺乏灵活性、安全问题、重量和成本而闻名。采用电源硬件在环(PHIL)已经成为测试和验证电机变速驱动器(vsd)控制算法和硬件的增强技术。本文介绍了利用PHIL对具有电压控制的LCL耦合网络的永磁同步电机(PMSM)进行仿真。详细介绍了系统的工作原理、建模和控制结构。所提出的策略允许电机仿真器(EME)在其运行期间将机器的低基频与被测设备(DUT)的高频(电流纹波)解耦。除了对电流纹波的影响外,还详细讨论了使用不同的电感来复制具有固定同步电感的机器。通过基于fpga的实时模拟器和专用控制板(PED-Board)的实验测试,支持并验证了理论工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling Current Ripple in PHIL PMSM Emulation Using LCL Filter: A Fundamental Frequency Analysis
The traditional machine test benches are known for their inflexibility, safety concerns, weight, and cost. The adoption of Power Hardware-in-the-Loop (PHIL) has been appearing as an enhanced technique to test and validate control algorithms and hardware of Variable Speed Drives (VSDs) for electrical machines. This paper presents the use of the PHIL for the emulation of a Permanent Magnet Synchronous Machine (PMSM) using an LCL coupling network with voltage control. The principle of operation, modeling and control structures are presented in detail. The presented strategy allows the Electrical Machine Emulator (EME) to decouple the low fundamental frequency of the machine from the high frequency (current ripple) of the Device Under Test (DUT) during its operation. The use of different inductances for the reproduction of a machine with a fixed synchronous inductance is addressed in detail, besides the consequences on the current ripple. The theoretical work is supported and validated through experimental tests using an FPGA-Based Real Time Simulator and dedicated control boards (PED-Board).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信