最大度不超过n的n阶大树 − 6与9阶轮盘的Ramsey数

IF 0.7 3区 数学 Q2 MATHEMATICS
Thomas Britz , Zhi Yee Chng , Kok Bin Wong
{"title":"最大度不超过n的n阶大树 − 6与9阶轮盘的Ramsey数","authors":"Thomas Britz ,&nbsp;Zhi Yee Chng ,&nbsp;Kok Bin Wong","doi":"10.1016/j.disc.2025.114461","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed positive integer <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, the Ramsey numbers <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> are determined for the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of sufficiently large order <em>n</em> and maximum degree <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for each tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of order <span><math><mi>n</mi><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>+</mo><mn>2</mn></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> is even, for the case when <span><math><mi>m</mi><mo>=</mo><mn>8</mn></math></span> and <em>n</em> is sufficiently large.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114461"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine\",\"authors\":\"Thomas Britz ,&nbsp;Zhi Yee Chng ,&nbsp;Kok Bin Wong\",\"doi\":\"10.1016/j.disc.2025.114461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a fixed positive integer <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, the Ramsey numbers <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> are determined for the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of sufficiently large order <em>n</em> and maximum degree <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for each tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of order <span><math><mi>n</mi><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>+</mo><mn>2</mn></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> is even, for the case when <span><math><mi>m</mi><mo>=</mo><mn>8</mn></math></span> and <em>n</em> is sufficiently large.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 7\",\"pages\":\"Article 114461\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500069X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500069X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于固定正整数k≥5,对于足够大阶n且最大阶Δ(Tn)=n−k−1的树Tn,确定了拉姆齐数R(Tn,W8)。该结果部分证明了由Chen、Zhang和Zhang以及Hafidh和Baskoro提出的猜想,即当m≥4为偶数时,当m=8且n足够大时,对于阶n≥m - 1且Δ(Tn)≤n - m+2的每棵树Tn, R(Tn,Wm)=2n - 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine
For a fixed positive integer k5, the Ramsey numbers R(Tn,W8) are determined for the tree Tn of sufficiently large order n and maximum degree Δ(Tn)=nk1. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that R(Tn,Wm)=2n1 for each tree Tn of order nm1 with Δ(Tn)nm+2 when m4 is even, for the case when m=8 and n is sufficiently large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信