用拉格朗日方法求解确定性平均场型最优控制问题的庞特里亚金极大值原理

IF 2.3 2区 数学 Q1 MATHEMATICS
Yurii Averboukh, Dmitry Khlopin
{"title":"用拉格朗日方法求解确定性平均场型最优控制问题的庞特里亚金极大值原理","authors":"Yurii Averboukh,&nbsp;Dmitry Khlopin","doi":"10.1016/j.jde.2025.02.076","DOIUrl":null,"url":null,"abstract":"<div><div>We study necessary optimality conditions for the deterministic mean field type free-endpoint optimal control problem. Our study relies on the Lagrangian approach that treats the mean field type control system as a crowd of infinitely many agents who are labeled by elements of some probability space. First, we derive the Pontryagin maximum principle in the Lagrangian form. Furthermore, we consider the Kantorovich and Eulerian formalizations which describe mean field type control systems via distributions on the set of trajectories and nonlocal continuity equation respectively. We prove that local minimizers in the Kantorovich or Eulerian formulations determine local minimizers within the Lagrangian approach. Using this, we deduce the Pontryagin maximum principle in the Kantorovich and Eulerian forms. To illustrate the general theory, we examine a model system of mean field type linear quadratic regulator. We show that the optimal strategy in this case is determined by a linear feedback.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113205"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach\",\"authors\":\"Yurii Averboukh,&nbsp;Dmitry Khlopin\",\"doi\":\"10.1016/j.jde.2025.02.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study necessary optimality conditions for the deterministic mean field type free-endpoint optimal control problem. Our study relies on the Lagrangian approach that treats the mean field type control system as a crowd of infinitely many agents who are labeled by elements of some probability space. First, we derive the Pontryagin maximum principle in the Lagrangian form. Furthermore, we consider the Kantorovich and Eulerian formalizations which describe mean field type control systems via distributions on the set of trajectories and nonlocal continuity equation respectively. We prove that local minimizers in the Kantorovich or Eulerian formulations determine local minimizers within the Lagrangian approach. Using this, we deduce the Pontryagin maximum principle in the Kantorovich and Eulerian forms. To illustrate the general theory, we examine a model system of mean field type linear quadratic regulator. We show that the optimal strategy in this case is determined by a linear feedback.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"430 \",\"pages\":\"Article 113205\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625002013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了确定性平均场型自由端点最优控制问题的最优性必要条件。我们的研究依赖于拉格朗日方法,该方法将平均场型控制系统视为无限多个智能体的群体,这些智能体由某个概率空间的元素标记。首先,我们导出了拉格朗日形式的庞特里亚金极大原理。此外,我们还分别考虑了用轨迹集上的分布和非局部连续性方程来描述平均场型控制系统的Kantorovich和Eulerian形式化。我们证明了Kantorovich或欧拉公式中的局部极小值决定了拉格朗日方法中的局部极小值。由此,我们推导出了坎托洛维奇和欧拉形式的庞特里亚金极大原理。为了说明一般理论,我们研究了一个平均场型线性二次型调节器的模型系统。我们证明了这种情况下的最优策略是由线性反馈决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach
We study necessary optimality conditions for the deterministic mean field type free-endpoint optimal control problem. Our study relies on the Lagrangian approach that treats the mean field type control system as a crowd of infinitely many agents who are labeled by elements of some probability space. First, we derive the Pontryagin maximum principle in the Lagrangian form. Furthermore, we consider the Kantorovich and Eulerian formalizations which describe mean field type control systems via distributions on the set of trajectories and nonlocal continuity equation respectively. We prove that local minimizers in the Kantorovich or Eulerian formulations determine local minimizers within the Lagrangian approach. Using this, we deduce the Pontryagin maximum principle in the Kantorovich and Eulerian forms. To illustrate the general theory, we examine a model system of mean field type linear quadratic regulator. We show that the optimal strategy in this case is determined by a linear feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信