解码虚拟聊天:NLP对学术图书馆服务的洞察。

IF 2.4 3区 管理学 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Jiebei Luo, Alyssa Brissett
{"title":"解码虚拟聊天:NLP对学术图书馆服务的洞察。","authors":"Jiebei Luo,&nbsp;Alyssa Brissett","doi":"10.1016/j.lisr.2025.101344","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing unstructured data from virtual reference chats is complex. Full-text reveals nuances but is time-consuming, while transcript metadata gives an overview but may miss important details in the conversation. This research applies a machine learning (ML) tool to the complete set of transcripts from a research university's chat reference service (2017–2022) to examine evolving trends and patron needs in the library reference service. The study has two key objectives: 1) demonstrating ML's effectiveness in the academic library setting, and 2) assessing the impact of COVID-19 on chat reference needs. A text classification model, trained on 1.5 % of the sample, achieves a 75 % accuracy match with human annotations. Findings indicate a marked rise in circulation-related inquiries as libraries transitioned to fully online services during the pandemic. Notably, user behaviors remain consistent even after the pandemic. This study highlights ML's potential to analyze large-scale unstructured data effectively in the academic library setting.</div></div>","PeriodicalId":47618,"journal":{"name":"Library & Information Science Research","volume":"47 1","pages":"Article 101344"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding virtual chats: NLP insights into academic library services.\",\"authors\":\"Jiebei Luo,&nbsp;Alyssa Brissett\",\"doi\":\"10.1016/j.lisr.2025.101344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assessing unstructured data from virtual reference chats is complex. Full-text reveals nuances but is time-consuming, while transcript metadata gives an overview but may miss important details in the conversation. This research applies a machine learning (ML) tool to the complete set of transcripts from a research university's chat reference service (2017–2022) to examine evolving trends and patron needs in the library reference service. The study has two key objectives: 1) demonstrating ML's effectiveness in the academic library setting, and 2) assessing the impact of COVID-19 on chat reference needs. A text classification model, trained on 1.5 % of the sample, achieves a 75 % accuracy match with human annotations. Findings indicate a marked rise in circulation-related inquiries as libraries transitioned to fully online services during the pandemic. Notably, user behaviors remain consistent even after the pandemic. This study highlights ML's potential to analyze large-scale unstructured data effectively in the academic library setting.</div></div>\",\"PeriodicalId\":47618,\"journal\":{\"name\":\"Library & Information Science Research\",\"volume\":\"47 1\",\"pages\":\"Article 101344\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Library & Information Science Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740818825000052\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Library & Information Science Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740818825000052","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

评估来自虚拟参考聊天的非结构化数据是复杂的。全文显示细微差别,但耗时,而文本元数据提供概述,但可能错过对话中的重要细节。本研究将机器学习(ML)工具应用于一所研究型大学聊天参考服务(2017-2022)的完整成绩单,以研究图书馆参考服务的发展趋势和用户需求。该研究有两个关键目标:1)证明机器学习在学术图书馆环境中的有效性,2)评估COVID-19对聊天参考需求的影响。在1.5%的样本上训练的文本分类模型与人工注释的准确率达到75%。调查结果表明,随着图书馆在疫情期间过渡到完全在线服务,与流通相关的查询显著增加。值得注意的是,即使在大流行之后,用户行为仍然保持一致。这项研究强调了机器学习在学术图书馆环境中有效分析大规模非结构化数据的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding virtual chats: NLP insights into academic library services.
Assessing unstructured data from virtual reference chats is complex. Full-text reveals nuances but is time-consuming, while transcript metadata gives an overview but may miss important details in the conversation. This research applies a machine learning (ML) tool to the complete set of transcripts from a research university's chat reference service (2017–2022) to examine evolving trends and patron needs in the library reference service. The study has two key objectives: 1) demonstrating ML's effectiveness in the academic library setting, and 2) assessing the impact of COVID-19 on chat reference needs. A text classification model, trained on 1.5 % of the sample, achieves a 75 % accuracy match with human annotations. Findings indicate a marked rise in circulation-related inquiries as libraries transitioned to fully online services during the pandemic. Notably, user behaviors remain consistent even after the pandemic. This study highlights ML's potential to analyze large-scale unstructured data effectively in the academic library setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Library & Information Science Research
Library & Information Science Research INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.60
自引率
6.90%
发文量
51
期刊介绍: Library & Information Science Research, a cross-disciplinary and refereed journal, focuses on the research process in library and information science as well as research findings and, where applicable, their practical applications and significance. All papers are subject to a double-blind reviewing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信