具有非局部边界条件的非线性隐式分数阶微分方程的一些新的存在性和稳定性结果

Q1 Mathematics
Rahman Ullah Khan , Ioan-Lucian Popa
{"title":"具有非局部边界条件的非线性隐式分数阶微分方程的一些新的存在性和稳定性结果","authors":"Rahman Ullah Khan ,&nbsp;Ioan-Lucian Popa","doi":"10.1016/j.padiff.2025.101132","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates nonlinear implicit fractional differential equations involving Hilfer-Katugampola fractional derivatives. Novel techniques are developed to establish the existence and uniqueness of solutions for the proposed problem using fixed-point theorems. Additionally, Hyers-Ulam stability and generalized Hyers-Ulam stability are analyzed, and an example is provided to validate the theoretical results.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"13 ","pages":"Article 101132"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some novel existence and stability results for a nonlinear implicit fractional differential equation with non-local boundary conditions\",\"authors\":\"Rahman Ullah Khan ,&nbsp;Ioan-Lucian Popa\",\"doi\":\"10.1016/j.padiff.2025.101132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates nonlinear implicit fractional differential equations involving Hilfer-Katugampola fractional derivatives. Novel techniques are developed to establish the existence and uniqueness of solutions for the proposed problem using fixed-point theorems. Additionally, Hyers-Ulam stability and generalized Hyers-Ulam stability are analyzed, and an example is provided to validate the theoretical results.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"13 \",\"pages\":\"Article 101132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125000592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了含Hilfer-Katugampola分数阶导数的非线性隐式分数阶微分方程。利用不动点定理建立了该问题解的存在唯一性。此外,还分析了Hyers-Ulam稳定性和广义Hyers-Ulam稳定性,并通过算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some novel existence and stability results for a nonlinear implicit fractional differential equation with non-local boundary conditions
This paper investigates nonlinear implicit fractional differential equations involving Hilfer-Katugampola fractional derivatives. Novel techniques are developed to establish the existence and uniqueness of solutions for the proposed problem using fixed-point theorems. Additionally, Hyers-Ulam stability and generalized Hyers-Ulam stability are analyzed, and an example is provided to validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信