Qiulong Gao , Jinxia Hu , Dong Pei , Zhangpeng Li , Jinqing Wang , Shengrong Yang
{"title":"绿色液体超润滑和生物润滑用硼酸基深共晶溶剂的设计与合成","authors":"Qiulong Gao , Jinxia Hu , Dong Pei , Zhangpeng Li , Jinqing Wang , Shengrong Yang","doi":"10.1016/j.nxmate.2025.100572","DOIUrl":null,"url":null,"abstract":"<div><div>Research on the chemical structures and physicochemical properties of deep eutectic solvents (DESs) is crucial to develop high-performance DES-based lubricating materials for solving tribological problem, including friction and wear. Herein, a series of boric acid-based DESs (B-DESs) were synthesized using choline chloride (hydrogen bond acceptor, HBA) and sorbitol/boric acid (hydrogen bond donors, HBDs) through a simple heating-stirring method. The experimental investigations and quantum chemistry calculation demonstrated that B-DESs exhibited optimized chemical structures, favorable rheological properties, low melting points (below −61.6 °C), high thermostability (with decomposition temperatures exceeding 282 °C), and biocompatibility. As lubricants, they showed exceptional tribological performance, achieving macroscale superlubricity with a friction coefficient of ∼0.0088 and excellent anti-wear properties on polyoxymethylene substrates even under high-load conditions. The exceptional lubrication performance was attributed to synergetic lubrication between the fluid nature of B-DESs and the self-lubrication property of the substrates, as well as the potential formation of lubricating films at the tribo-interface. This study introduces a novel and straightforward approach for synthesizing green and high-performance DES-based liquid superlubricity materials, and offering significant potential in bio-lubrication applications.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100572"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and synthesis of boric acid-based deep eutectic solvents for green liquid superlubricity and bio-lubrication applications\",\"authors\":\"Qiulong Gao , Jinxia Hu , Dong Pei , Zhangpeng Li , Jinqing Wang , Shengrong Yang\",\"doi\":\"10.1016/j.nxmate.2025.100572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research on the chemical structures and physicochemical properties of deep eutectic solvents (DESs) is crucial to develop high-performance DES-based lubricating materials for solving tribological problem, including friction and wear. Herein, a series of boric acid-based DESs (B-DESs) were synthesized using choline chloride (hydrogen bond acceptor, HBA) and sorbitol/boric acid (hydrogen bond donors, HBDs) through a simple heating-stirring method. The experimental investigations and quantum chemistry calculation demonstrated that B-DESs exhibited optimized chemical structures, favorable rheological properties, low melting points (below −61.6 °C), high thermostability (with decomposition temperatures exceeding 282 °C), and biocompatibility. As lubricants, they showed exceptional tribological performance, achieving macroscale superlubricity with a friction coefficient of ∼0.0088 and excellent anti-wear properties on polyoxymethylene substrates even under high-load conditions. The exceptional lubrication performance was attributed to synergetic lubrication between the fluid nature of B-DESs and the self-lubrication property of the substrates, as well as the potential formation of lubricating films at the tribo-interface. This study introduces a novel and straightforward approach for synthesizing green and high-performance DES-based liquid superlubricity materials, and offering significant potential in bio-lubrication applications.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825000905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and synthesis of boric acid-based deep eutectic solvents for green liquid superlubricity and bio-lubrication applications
Research on the chemical structures and physicochemical properties of deep eutectic solvents (DESs) is crucial to develop high-performance DES-based lubricating materials for solving tribological problem, including friction and wear. Herein, a series of boric acid-based DESs (B-DESs) were synthesized using choline chloride (hydrogen bond acceptor, HBA) and sorbitol/boric acid (hydrogen bond donors, HBDs) through a simple heating-stirring method. The experimental investigations and quantum chemistry calculation demonstrated that B-DESs exhibited optimized chemical structures, favorable rheological properties, low melting points (below −61.6 °C), high thermostability (with decomposition temperatures exceeding 282 °C), and biocompatibility. As lubricants, they showed exceptional tribological performance, achieving macroscale superlubricity with a friction coefficient of ∼0.0088 and excellent anti-wear properties on polyoxymethylene substrates even under high-load conditions. The exceptional lubrication performance was attributed to synergetic lubrication between the fluid nature of B-DESs and the self-lubrication property of the substrates, as well as the potential formation of lubricating films at the tribo-interface. This study introduces a novel and straightforward approach for synthesizing green and high-performance DES-based liquid superlubricity materials, and offering significant potential in bio-lubrication applications.