Xiaodi Jia, Shujie Jiao, Song Yang, Zehao Shi, Penghui Wang, Dongbo Wang, Shiyong Gao, Jinzhong Wang
{"title":"热光电子效应增强自供电光电探测器:钙钛矿材料的研究进展","authors":"Xiaodi Jia, Shujie Jiao, Song Yang, Zehao Shi, Penghui Wang, Dongbo Wang, Shiyong Gao, Jinzhong Wang","doi":"10.1016/j.nxmate.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>The self-powered photodetectors (PDs), characterized by their simple structure, low energy consumption and portability, are well-suited for meeting the needs of intelligent, wearable, mobile and portable electronic devices, showing promising potential in optoelectronics. A higher built-in electric field in the heterojunction is an advantageous condition for the excellent performance of self-powered PDs. Apart from choosing suitable materials to construct higher built-in electric field, utilization of the pyro-phototronic effect of materials can greatly tune up the built-in electric field. Additionally, the ferro-pyro-phototronic effect and the pyro-piezo-phototronic effect can further improve the performance of the self-powered PDs. Perovskite materials, as a star optoelectronic material, are widely used in self-powered PDs. In this review, we explore advancements in perovskite-based PDs, driven by the pyro-phototronic effect, aiming to offer novel insights and spur innovation in the realm of high-performance self-powered optoelectronics.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100563"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyro-phototronic effect enhanced self-powered photodetectors: A review on perovskite materials\",\"authors\":\"Xiaodi Jia, Shujie Jiao, Song Yang, Zehao Shi, Penghui Wang, Dongbo Wang, Shiyong Gao, Jinzhong Wang\",\"doi\":\"10.1016/j.nxmate.2025.100563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The self-powered photodetectors (PDs), characterized by their simple structure, low energy consumption and portability, are well-suited for meeting the needs of intelligent, wearable, mobile and portable electronic devices, showing promising potential in optoelectronics. A higher built-in electric field in the heterojunction is an advantageous condition for the excellent performance of self-powered PDs. Apart from choosing suitable materials to construct higher built-in electric field, utilization of the pyro-phototronic effect of materials can greatly tune up the built-in electric field. Additionally, the ferro-pyro-phototronic effect and the pyro-piezo-phototronic effect can further improve the performance of the self-powered PDs. Perovskite materials, as a star optoelectronic material, are widely used in self-powered PDs. In this review, we explore advancements in perovskite-based PDs, driven by the pyro-phototronic effect, aiming to offer novel insights and spur innovation in the realm of high-performance self-powered optoelectronics.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825000814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pyro-phototronic effect enhanced self-powered photodetectors: A review on perovskite materials
The self-powered photodetectors (PDs), characterized by their simple structure, low energy consumption and portability, are well-suited for meeting the needs of intelligent, wearable, mobile and portable electronic devices, showing promising potential in optoelectronics. A higher built-in electric field in the heterojunction is an advantageous condition for the excellent performance of self-powered PDs. Apart from choosing suitable materials to construct higher built-in electric field, utilization of the pyro-phototronic effect of materials can greatly tune up the built-in electric field. Additionally, the ferro-pyro-phototronic effect and the pyro-piezo-phototronic effect can further improve the performance of the self-powered PDs. Perovskite materials, as a star optoelectronic material, are widely used in self-powered PDs. In this review, we explore advancements in perovskite-based PDs, driven by the pyro-phototronic effect, aiming to offer novel insights and spur innovation in the realm of high-performance self-powered optoelectronics.