一些标准图积奇色数的紧界

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Priyamvada
{"title":"一些标准图积奇色数的紧界","authors":"Priyamvada","doi":"10.1016/j.dam.2025.02.041","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>odd coloring</em> of a graph <span><math><mi>G</mi></math></span> is an assignment <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of colors to the vertices of <span><math><mi>G</mi></math></span> such that <span><math><mi>f</mi></math></span> is a proper vertex coloring and for every non-isolated vertex <span><math><mi>v</mi></math></span>, there is a color that occurs an odd number of times within its open neighborhood. The minimum number of colors required by any odd coloring of <span><math><mi>G</mi></math></span> is called the <em>odd chromatic number</em> of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we give tight upper bounds on the odd chromatic number of various standard graph products and operations, including the lexicographic product, corona product, edge corona product and Mycielskian of a graph. Moreover, we give tight lower bounds on the odd chromatic number of corona product and edge corona product of graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 1-13"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight bounds on odd chromatic number of some standard graph products\",\"authors\":\"Priyamvada\",\"doi\":\"10.1016/j.dam.2025.02.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>odd coloring</em> of a graph <span><math><mi>G</mi></math></span> is an assignment <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of colors to the vertices of <span><math><mi>G</mi></math></span> such that <span><math><mi>f</mi></math></span> is a proper vertex coloring and for every non-isolated vertex <span><math><mi>v</mi></math></span>, there is a color that occurs an odd number of times within its open neighborhood. The minimum number of colors required by any odd coloring of <span><math><mi>G</mi></math></span> is called the <em>odd chromatic number</em> of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we give tight upper bounds on the odd chromatic number of various standard graph products and operations, including the lexicographic product, corona product, edge corona product and Mycielskian of a graph. Moreover, we give tight lower bounds on the odd chromatic number of corona product and edge corona product of graphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"369 \",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001039\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的奇着色是将f:V(G)→{1,2,…,k}的颜色赋值给G的顶点,使得f是一个适当的顶点着色,并且对于每一个非孤立顶点V,在它的开邻域中存在一个出现奇数次的颜色。G的任何奇着色所需的最小色数称为G的奇色数,用χo(G)表示。本文给出了各种标准图积和运算的奇色数的紧上界,包括图的字典积、电晕积、边电晕积和Mycielskian。并给出了图的电晕积和边电晕积的奇色数的紧下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight bounds on odd chromatic number of some standard graph products
An odd coloring of a graph G is an assignment f:V(G){1,2,,k} of colors to the vertices of G such that f is a proper vertex coloring and for every non-isolated vertex v, there is a color that occurs an odd number of times within its open neighborhood. The minimum number of colors required by any odd coloring of G is called the odd chromatic number of G and is denoted by χo(G). In this paper, we give tight upper bounds on the odd chromatic number of various standard graph products and operations, including the lexicographic product, corona product, edge corona product and Mycielskian of a graph. Moreover, we give tight lower bounds on the odd chromatic number of corona product and edge corona product of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信