金核-多孔钯壳负载金纳米粒子超结构作为乙醇氧化反应的高效电催化剂

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Liu, Hao Wang, Hanchi Ma, Bin Liu, Jianhui Yang
{"title":"金核-多孔钯壳负载金纳米粒子超结构作为乙醇氧化反应的高效电催化剂","authors":"Hao Liu,&nbsp;Hao Wang,&nbsp;Hanchi Ma,&nbsp;Bin Liu,&nbsp;Jianhui Yang","doi":"10.1016/j.materresbull.2025.113406","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated metallic nanomaterials composed of more than one type of metal expands the functionalities and nanocatalysts due to the multidimensional and synergistic effects. For a porous core-shell nanoparticles (NPs), there are abundant undercoordinated active sites and remarkable electron/mass transports, and the multimetallic synergy can improve the catalytic activity and durability. Here, a successive seed-mediated growth method was employed to synthesize Au core-porous Pd shell loaded Au NPs (denoted as Au@Pd-Au) superstructures. The introduction of Au particles on the surface of Au core-porous Pd shell NPs prevents oxidation of the porous Pd surfaces. Taking advantage of the porous superstructures and bimetallic synergy, the electrocatalytic ethanol oxidation performance, including activity and durability, of the Au@Pd-Au superstructures were significantly enhanced. We thus believe that the Au@Pd-Au superstructures with novel morphologies and functionalities can become an attractive electrocatalyst in direct ethanol fuel cells.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"188 ","pages":"Article 113406"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Au core-porous Pd shell loaded Au nanoparticles superstructures as efficient electrocatalysts for ethanol oxidation reaction\",\"authors\":\"Hao Liu,&nbsp;Hao Wang,&nbsp;Hanchi Ma,&nbsp;Bin Liu,&nbsp;Jianhui Yang\",\"doi\":\"10.1016/j.materresbull.2025.113406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated metallic nanomaterials composed of more than one type of metal expands the functionalities and nanocatalysts due to the multidimensional and synergistic effects. For a porous core-shell nanoparticles (NPs), there are abundant undercoordinated active sites and remarkable electron/mass transports, and the multimetallic synergy can improve the catalytic activity and durability. Here, a successive seed-mediated growth method was employed to synthesize Au core-porous Pd shell loaded Au NPs (denoted as Au@Pd-Au) superstructures. The introduction of Au particles on the surface of Au core-porous Pd shell NPs prevents oxidation of the porous Pd surfaces. Taking advantage of the porous superstructures and bimetallic synergy, the electrocatalytic ethanol oxidation performance, including activity and durability, of the Au@Pd-Au superstructures were significantly enhanced. We thus believe that the Au@Pd-Au superstructures with novel morphologies and functionalities can become an attractive electrocatalyst in direct ethanol fuel cells.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"188 \",\"pages\":\"Article 113406\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082500114X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082500114X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由多种金属组成的集成金属纳米材料由于其多维度和协同效应,扩展了其功能和纳米催化剂。多孔核壳纳米粒子具有丰富的欠配位活性位点和显著的电子/质量输运,多金属协同作用可提高其催化活性和耐久性。本文采用连续种子介导生长方法合成了负载Au NPs(表示为Au@Pd-Au)的Au核多孔Pd壳超结构。在金核多孔Pd壳NPs表面引入Au粒子可以防止多孔Pd表面氧化。利用多孔上部结构和双金属协同作用,Au@Pd-Au上部结构的电催化乙醇氧化性能得到了显著提高,包括活性和耐久性。因此,我们相信具有新颖形态和功能的Au@Pd-Au上层结构可以成为直接乙醇燃料电池中有吸引力的电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Au core-porous Pd shell loaded Au nanoparticles superstructures as efficient electrocatalysts for ethanol oxidation reaction

Au core-porous Pd shell loaded Au nanoparticles superstructures as efficient electrocatalysts for ethanol oxidation reaction
Integrated metallic nanomaterials composed of more than one type of metal expands the functionalities and nanocatalysts due to the multidimensional and synergistic effects. For a porous core-shell nanoparticles (NPs), there are abundant undercoordinated active sites and remarkable electron/mass transports, and the multimetallic synergy can improve the catalytic activity and durability. Here, a successive seed-mediated growth method was employed to synthesize Au core-porous Pd shell loaded Au NPs (denoted as Au@Pd-Au) superstructures. The introduction of Au particles on the surface of Au core-porous Pd shell NPs prevents oxidation of the porous Pd surfaces. Taking advantage of the porous superstructures and bimetallic synergy, the electrocatalytic ethanol oxidation performance, including activity and durability, of the Au@Pd-Au superstructures were significantly enhanced. We thus believe that the Au@Pd-Au superstructures with novel morphologies and functionalities can become an attractive electrocatalyst in direct ethanol fuel cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信